D. Zakusilo, E. Evstigneyev, A. Ivanov, Anton S. Mazur, E. Bessonova, O. Mammeri, A. Vasilyev
{"title":"氧化水解木质素的结构","authors":"D. Zakusilo, E. Evstigneyev, A. Ivanov, Anton S. Mazur, E. Bessonova, O. Mammeri, A. Vasilyev","doi":"10.1080/02773813.2023.2187064","DOIUrl":null,"url":null,"abstract":"Abstract The main goal of this study was the elucidation of structures of products of oxidation of industrial hydrolysis lignin (HL) obtained in the system H2O2-H2SO4-H2O. It was found that the obtained oxidized hydrolysis lignin (OHL) contained structural fragments of muconic acid dilactone. The latter appeared as a result of the oxidation of aromatic ring of HL into unstable structures of 3,4-dihydroxyadipic acid, which are spontaneously cyclized into the corresponding fragments of muconic acid dilactone in acidic oxidative medium. Consequent reaction of OHL with aqueous sodium hydroxide (NaOH) led to the formation of sodium salt of OHL (Na-OHL), in which the muconic acid dilactone units of OHL opened into fragments of disodium salts of 3,4-dihydroxyadipic acid. The Na-OHL was transformed into the series of novel derivatives of lignins. Thus, the reaction of Na-OHL with thionyl chloride proceeded as a substitution of hydroxyl groups into chlorine atoms in the structure of OHL, that afforded chloro-derivative of OHL. The latter was transformed into amino-amide and ester-ether derivatives of OHL by nucleophilic substitution of chlorine atoms with amines and alcohols correspondingly.","PeriodicalId":17493,"journal":{"name":"Journal of Wood Chemistry and Technology","volume":"43 1","pages":"103 - 115"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure of oxidized hydrolysis lignin\",\"authors\":\"D. Zakusilo, E. Evstigneyev, A. Ivanov, Anton S. Mazur, E. Bessonova, O. Mammeri, A. Vasilyev\",\"doi\":\"10.1080/02773813.2023.2187064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main goal of this study was the elucidation of structures of products of oxidation of industrial hydrolysis lignin (HL) obtained in the system H2O2-H2SO4-H2O. It was found that the obtained oxidized hydrolysis lignin (OHL) contained structural fragments of muconic acid dilactone. The latter appeared as a result of the oxidation of aromatic ring of HL into unstable structures of 3,4-dihydroxyadipic acid, which are spontaneously cyclized into the corresponding fragments of muconic acid dilactone in acidic oxidative medium. Consequent reaction of OHL with aqueous sodium hydroxide (NaOH) led to the formation of sodium salt of OHL (Na-OHL), in which the muconic acid dilactone units of OHL opened into fragments of disodium salts of 3,4-dihydroxyadipic acid. The Na-OHL was transformed into the series of novel derivatives of lignins. Thus, the reaction of Na-OHL with thionyl chloride proceeded as a substitution of hydroxyl groups into chlorine atoms in the structure of OHL, that afforded chloro-derivative of OHL. The latter was transformed into amino-amide and ester-ether derivatives of OHL by nucleophilic substitution of chlorine atoms with amines and alcohols correspondingly.\",\"PeriodicalId\":17493,\"journal\":{\"name\":\"Journal of Wood Chemistry and Technology\",\"volume\":\"43 1\",\"pages\":\"103 - 115\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Chemistry and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02773813.2023.2187064\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Chemistry and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02773813.2023.2187064","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Abstract The main goal of this study was the elucidation of structures of products of oxidation of industrial hydrolysis lignin (HL) obtained in the system H2O2-H2SO4-H2O. It was found that the obtained oxidized hydrolysis lignin (OHL) contained structural fragments of muconic acid dilactone. The latter appeared as a result of the oxidation of aromatic ring of HL into unstable structures of 3,4-dihydroxyadipic acid, which are spontaneously cyclized into the corresponding fragments of muconic acid dilactone in acidic oxidative medium. Consequent reaction of OHL with aqueous sodium hydroxide (NaOH) led to the formation of sodium salt of OHL (Na-OHL), in which the muconic acid dilactone units of OHL opened into fragments of disodium salts of 3,4-dihydroxyadipic acid. The Na-OHL was transformed into the series of novel derivatives of lignins. Thus, the reaction of Na-OHL with thionyl chloride proceeded as a substitution of hydroxyl groups into chlorine atoms in the structure of OHL, that afforded chloro-derivative of OHL. The latter was transformed into amino-amide and ester-ether derivatives of OHL by nucleophilic substitution of chlorine atoms with amines and alcohols correspondingly.
期刊介绍:
The Journal of Wood Chemistry and Technology (JWCT) is focused on the rapid publication of research advances in the chemistry of bio-based materials and products, including all aspects of wood-based polymers, chemicals, materials, and technology. JWCT provides an international forum for researchers and manufacturers working in wood-based biopolymers and chemicals, synthesis and characterization, as well as the chemistry of biomass conversion and utilization.
JWCT primarily publishes original research papers and communications, and occasionally invited review articles and special issues. Special issues must summarize and analyze state-of-the-art developments within the field of biomass chemistry, or be in tribute to the career of a distinguished researcher. If you wish to suggest a special issue for the Journal, please email the Editor-in-Chief a detailed proposal that includes the topic, a list of potential contributors, and a time-line.