{"title":"不变空间树网络中的路由长度","authors":"D. Aldous","doi":"10.1214/21-ECP401","DOIUrl":null,"url":null,"abstract":"Is there a constant r0 such that, in any invariant tree network linking rate-1 Poisson points in the plane, the mean within-network distance between points at Euclidean distance r is infinite for r>r0? We prove a slightly weaker result. This is a continuum analog of a result of Benjamini et al (2001) on invariant spanning trees of the integer lattice.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":"26 1","pages":"1-12"},"PeriodicalIF":0.5000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Route lengths in invariant spatial tree networks\",\"authors\":\"D. Aldous\",\"doi\":\"10.1214/21-ECP401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Is there a constant r0 such that, in any invariant tree network linking rate-1 Poisson points in the plane, the mean within-network distance between points at Euclidean distance r is infinite for r>r0? We prove a slightly weaker result. This is a continuum analog of a result of Benjamini et al (2001) on invariant spanning trees of the integer lattice.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\"26 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ECP401\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ECP401","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Is there a constant r0 such that, in any invariant tree network linking rate-1 Poisson points in the plane, the mean within-network distance between points at Euclidean distance r is infinite for r>r0? We prove a slightly weaker result. This is a continuum analog of a result of Benjamini et al (2001) on invariant spanning trees of the integer lattice.
期刊介绍:
The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.