{"title":"子图同构回溯算法改进技术的实验评价","authors":"J. Mihelic, U. Cibej","doi":"10.1515/comp-2020-0149","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study a well-known computationally hard problem, called the subgraph isomorphism problem where the goal is for a given pattern and target graphs to determine whether the pattern is a subgraph of the target graph. Numerous algorithms for solving the problem exist in the literature and most of them are based on the backtracking approach. Since straightforward backtracking is usually slow, many algorithmic refinement techniques are used in practical algorithms. The main goal of this paper is to study such refinement techniques and to determine their ability to speed up backtracking algorithms. To do this we use a methodology of experimental algorithmics. We perform an experimental evaluation of the techniques and their combinations and, hence, demonstrate their usefulness in practice.","PeriodicalId":43014,"journal":{"name":"Open Computer Science","volume":"11 1","pages":"33 - 42"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/comp-2020-0149","citationCount":"0","resultStr":"{\"title\":\"An experimental evaluation of refinement techniques for the subgraph isomorphism backtracking algorithms\",\"authors\":\"J. Mihelic, U. Cibej\",\"doi\":\"10.1515/comp-2020-0149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study a well-known computationally hard problem, called the subgraph isomorphism problem where the goal is for a given pattern and target graphs to determine whether the pattern is a subgraph of the target graph. Numerous algorithms for solving the problem exist in the literature and most of them are based on the backtracking approach. Since straightforward backtracking is usually slow, many algorithmic refinement techniques are used in practical algorithms. The main goal of this paper is to study such refinement techniques and to determine their ability to speed up backtracking algorithms. To do this we use a methodology of experimental algorithmics. We perform an experimental evaluation of the techniques and their combinations and, hence, demonstrate their usefulness in practice.\",\"PeriodicalId\":43014,\"journal\":{\"name\":\"Open Computer Science\",\"volume\":\"11 1\",\"pages\":\"33 - 42\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/comp-2020-0149\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/comp-2020-0149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2020-0149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
An experimental evaluation of refinement techniques for the subgraph isomorphism backtracking algorithms
Abstract In this paper, we study a well-known computationally hard problem, called the subgraph isomorphism problem where the goal is for a given pattern and target graphs to determine whether the pattern is a subgraph of the target graph. Numerous algorithms for solving the problem exist in the literature and most of them are based on the backtracking approach. Since straightforward backtracking is usually slow, many algorithmic refinement techniques are used in practical algorithms. The main goal of this paper is to study such refinement techniques and to determine their ability to speed up backtracking algorithms. To do this we use a methodology of experimental algorithmics. We perform an experimental evaluation of the techniques and their combinations and, hence, demonstrate their usefulness in practice.