超高性能纳米混凝土加筋CFST柱在长期荷载作用下的轴压性能

IF 6.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yan Yan, Zhiquan Xing, Xilong Chen, Zhentao Xie, Jiawei Zhang, Yu Chen
{"title":"超高性能纳米混凝土加筋CFST柱在长期荷载作用下的轴压性能","authors":"Yan Yan, Zhiquan Xing, Xilong Chen, Zhentao Xie, Jiawei Zhang, Yu Chen","doi":"10.1515/ntrev-2022-0537","DOIUrl":null,"url":null,"abstract":"Abstract The addition of nano-silica to ultra-high-performance concrete (UHPC) to increase its toughness has been proposed to obtain ultra-high-performance nano-concrete (UHPNC). This work mainly studies the reinforcement effect of UHPNC on concrete filled steel tube (CFST) columns under long-term load. Ten CFST columns strengthened with UHPNC were selected and reinforced with UHPNC. The influences of different thicknesses of UHPNC reinforcement layer and different nano-silica contents on the axial compression properties of specimens were mainly studied, by loading specimens in two steps: long-term load and ultimate load. This study discussed the failure modes, compressive toughness, ultimate bearing capacity, initial stiffness, and ductility coefficient of the specimens. The results show that the outsourced UHPNC reinforcement method is an effective method to improve the performance of CFST columns during service period. With the increase in the thickness of UHPNC reinforced layer, the ultimate bearing capacity of CFST column increases greatly. The compression toughness is increased with the increase in nano-silica content and UHPNC reinforcement layer thickness. The decrease rate of initial stiffness increases with the increase in nano-silica content.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Axial compression performance of CFST columns reinforced by ultra-high-performance nano-concrete under long-term loading\",\"authors\":\"Yan Yan, Zhiquan Xing, Xilong Chen, Zhentao Xie, Jiawei Zhang, Yu Chen\",\"doi\":\"10.1515/ntrev-2022-0537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The addition of nano-silica to ultra-high-performance concrete (UHPC) to increase its toughness has been proposed to obtain ultra-high-performance nano-concrete (UHPNC). This work mainly studies the reinforcement effect of UHPNC on concrete filled steel tube (CFST) columns under long-term load. Ten CFST columns strengthened with UHPNC were selected and reinforced with UHPNC. The influences of different thicknesses of UHPNC reinforcement layer and different nano-silica contents on the axial compression properties of specimens were mainly studied, by loading specimens in two steps: long-term load and ultimate load. This study discussed the failure modes, compressive toughness, ultimate bearing capacity, initial stiffness, and ductility coefficient of the specimens. The results show that the outsourced UHPNC reinforcement method is an effective method to improve the performance of CFST columns during service period. With the increase in the thickness of UHPNC reinforced layer, the ultimate bearing capacity of CFST column increases greatly. The compression toughness is increased with the increase in nano-silica content and UHPNC reinforcement layer thickness. The decrease rate of initial stiffness increases with the increase in nano-silica content.\",\"PeriodicalId\":18839,\"journal\":{\"name\":\"Nanotechnology Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/ntrev-2022-0537\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ntrev-2022-0537","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要提出在超高性能混凝土(UHPC)中添加纳米二氧化硅以提高其韧性,从而获得超高性能纳米混凝土(uhnc)。本文主要研究了UHPNC在长期荷载作用下对钢管混凝土柱的加固作用。选取10根钢管混凝土柱进行UHPNC加固。通过对试件进行长期加载和极限加载两步加载,主要研究了不同UHPNC增强层厚度和不同纳米二氧化硅含量对试件轴压性能的影响。讨论了试件的破坏模式、抗压韧性、极限承载力、初始刚度和延性系数。结果表明,外包UHPNC加固方法是提高服役期钢管混凝土柱性能的有效方法。随着UHPNC加筋层厚度的增加,钢管混凝土柱的极限承载力显著提高。压缩韧性随纳米二氧化硅含量的增加和UHPNC增强层厚度的增加而增加。随着纳米二氧化硅含量的增加,初始刚度的降低率增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axial compression performance of CFST columns reinforced by ultra-high-performance nano-concrete under long-term loading
Abstract The addition of nano-silica to ultra-high-performance concrete (UHPC) to increase its toughness has been proposed to obtain ultra-high-performance nano-concrete (UHPNC). This work mainly studies the reinforcement effect of UHPNC on concrete filled steel tube (CFST) columns under long-term load. Ten CFST columns strengthened with UHPNC were selected and reinforced with UHPNC. The influences of different thicknesses of UHPNC reinforcement layer and different nano-silica contents on the axial compression properties of specimens were mainly studied, by loading specimens in two steps: long-term load and ultimate load. This study discussed the failure modes, compressive toughness, ultimate bearing capacity, initial stiffness, and ductility coefficient of the specimens. The results show that the outsourced UHPNC reinforcement method is an effective method to improve the performance of CFST columns during service period. With the increase in the thickness of UHPNC reinforced layer, the ultimate bearing capacity of CFST column increases greatly. The compression toughness is increased with the increase in nano-silica content and UHPNC reinforcement layer thickness. The decrease rate of initial stiffness increases with the increase in nano-silica content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology Reviews
Nanotechnology Reviews CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
11.40
自引率
13.50%
发文量
137
审稿时长
7 weeks
期刊介绍: The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings. In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信