acreg:任意相关回归

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS
Fabrizio Colella, R. Lalive, S. Sakalli, Mathias Thoenig
{"title":"acreg:任意相关回归","authors":"Fabrizio Colella, R. Lalive, S. Sakalli, Mathias Thoenig","doi":"10.1177/1536867X231162031","DOIUrl":null,"url":null,"abstract":"We present acreg, a new command that implements the arbitrary clustering correction of standard errors proposed in Colella et al. (2019, IZA discussion paper 12584). Arbitrary here refers to the way observational units are correlated with each other: we impose no restrictions so that our approach can be used with a wide range of data. The command accommodates both cross-sectional and panel databases and allows the estimation of ordinary least-squares and two-stage least-squares coefficients, correcting standard errors in three environments: in a spatial setting using units’ coordinates or distance between units, in a network setting starting from the adjacency matrix, and in a multiway clustering framework taking multiple clustering variables as input. Distance and time cutoffs can be specified by the user, and linear decays in time and space are also optional.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"acreg: Arbitrary correlation regression\",\"authors\":\"Fabrizio Colella, R. Lalive, S. Sakalli, Mathias Thoenig\",\"doi\":\"10.1177/1536867X231162031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present acreg, a new command that implements the arbitrary clustering correction of standard errors proposed in Colella et al. (2019, IZA discussion paper 12584). Arbitrary here refers to the way observational units are correlated with each other: we impose no restrictions so that our approach can be used with a wide range of data. The command accommodates both cross-sectional and panel databases and allows the estimation of ordinary least-squares and two-stage least-squares coefficients, correcting standard errors in three environments: in a spatial setting using units’ coordinates or distance between units, in a network setting starting from the adjacency matrix, and in a multiway clustering framework taking multiple clustering variables as input. Distance and time cutoffs can be specified by the user, and linear decays in time and space are also optional.\",\"PeriodicalId\":51171,\"journal\":{\"name\":\"Stata Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stata Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1177/1536867X231162031\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X231162031","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的命令acreg,它实现了Colella等人提出的标准误差的任意聚类校正。(2019,IZA讨论论文12584)。这里的任意性指的是观测单位之间的相互关联方式:我们不施加任何限制,这样我们的方法就可以用于广泛的数据。该命令同时容纳横截面和面板数据库,并允许估计普通最小二乘和两阶段最小二乘系数,纠正三种环境中的标准误差:在使用单位坐标或单位之间距离的空间设置中,在从邻接矩阵开始的网络设置中,以及在以多个聚类变量作为输入的多路聚类框架中。用户可以指定距离和时间截止,时间和空间中的线性衰减也是可选的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
acreg: Arbitrary correlation regression
We present acreg, a new command that implements the arbitrary clustering correction of standard errors proposed in Colella et al. (2019, IZA discussion paper 12584). Arbitrary here refers to the way observational units are correlated with each other: we impose no restrictions so that our approach can be used with a wide range of data. The command accommodates both cross-sectional and panel databases and allows the estimation of ordinary least-squares and two-stage least-squares coefficients, correcting standard errors in three environments: in a spatial setting using units’ coordinates or distance between units, in a network setting starting from the adjacency matrix, and in a multiway clustering framework taking multiple clustering variables as input. Distance and time cutoffs can be specified by the user, and linear decays in time and space are also optional.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信