从缺陷到效果:控制石墨烯纳米带中的电子输运

IF 2.9 Q3 CHEMISTRY, PHYSICAL
Kristiāns Čerņevičs, O. Yazyev
{"title":"从缺陷到效果:控制石墨烯纳米带中的电子输运","authors":"Kristiāns Čerņevičs, O. Yazyev","doi":"10.1088/2516-1075/acbdd9","DOIUrl":null,"url":null,"abstract":"While bottom-up synthesis allows for precise control over the properties of graphene nanoribbons (GNRs), the use of certain precursor molecules can result in edge defects, such as missing benzene rings that resemble a ‘bite’. We investigate the adverse effect of the ‘bite’ defects on the electronic transport properties in three chevron-type GNRs and discover that the extent of scattering is governed by the different defect positions. Applying the concepts learned in single GNRs, we engineer defects in two nanostructures to construct prototypical components for nanoelectronics. First, we design a switch, consisting of three laterally fused fluorenyl-chevron GNRs, and place a pair of ‘bite’ defects to effectively allow the switching between four binary states corresponding to distinct current pathways. Second, we show that conscientious placement of a ‘bite’ defect pair can increase conductance between two leads in a triple chevron GNR junction. Overall, we outline how the incorporation of ‘bite’ defects affects transport properties in chevron-type nanostructures and provide a guide on how to design nanoelectronic components.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From defect to effect: controlling electronic transport in chevron graphene nanoribbons\",\"authors\":\"Kristiāns Čerņevičs, O. Yazyev\",\"doi\":\"10.1088/2516-1075/acbdd9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While bottom-up synthesis allows for precise control over the properties of graphene nanoribbons (GNRs), the use of certain precursor molecules can result in edge defects, such as missing benzene rings that resemble a ‘bite’. We investigate the adverse effect of the ‘bite’ defects on the electronic transport properties in three chevron-type GNRs and discover that the extent of scattering is governed by the different defect positions. Applying the concepts learned in single GNRs, we engineer defects in two nanostructures to construct prototypical components for nanoelectronics. First, we design a switch, consisting of three laterally fused fluorenyl-chevron GNRs, and place a pair of ‘bite’ defects to effectively allow the switching between four binary states corresponding to distinct current pathways. Second, we show that conscientious placement of a ‘bite’ defect pair can increase conductance between two leads in a triple chevron GNR junction. Overall, we outline how the incorporation of ‘bite’ defects affects transport properties in chevron-type nanostructures and provide a guide on how to design nanoelectronic components.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/acbdd9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/acbdd9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

虽然自下而上的合成可以精确控制石墨烯纳米带(GNRs)的性能,但使用某些前体分子可能会导致边缘缺陷,例如类似“咬”的苯环缺失。我们研究了“咬合”缺陷对三种V型GNR中电子输运性质的不利影响,并发现散射的程度由不同的缺陷位置决定。应用在单个GNR中学到的概念,我们在两个纳米结构中设计缺陷,以构建纳米电子的原型组件。首先,我们设计了一个开关,由三个横向融合的芴人字形GNR组成,并放置一对“咬合”缺陷,以有效地允许在对应于不同电流路径的四个二元状态之间切换。其次,我们证明了在三人字形GNR结中,认真放置“咬合”缺陷对可以增加两个引线之间的电导。总之,我们概述了“咬合”缺陷的引入如何影响人字形纳米结构的传输特性,并为如何设计纳米电子元件提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From defect to effect: controlling electronic transport in chevron graphene nanoribbons
While bottom-up synthesis allows for precise control over the properties of graphene nanoribbons (GNRs), the use of certain precursor molecules can result in edge defects, such as missing benzene rings that resemble a ‘bite’. We investigate the adverse effect of the ‘bite’ defects on the electronic transport properties in three chevron-type GNRs and discover that the extent of scattering is governed by the different defect positions. Applying the concepts learned in single GNRs, we engineer defects in two nanostructures to construct prototypical components for nanoelectronics. First, we design a switch, consisting of three laterally fused fluorenyl-chevron GNRs, and place a pair of ‘bite’ defects to effectively allow the switching between four binary states corresponding to distinct current pathways. Second, we show that conscientious placement of a ‘bite’ defect pair can increase conductance between two leads in a triple chevron GNR junction. Overall, we outline how the incorporation of ‘bite’ defects affects transport properties in chevron-type nanostructures and provide a guide on how to design nanoelectronic components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信