基于扩展混沌映射和群环的在线/离线ID签名的有效方法

IF 1.5 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Gaurav Mittal, S. Sushanth Kumar, Sandeep Kumar
{"title":"基于扩展混沌映射和群环的在线/离线ID签名的有效方法","authors":"Gaurav Mittal, S. Sushanth Kumar, Sandeep Kumar","doi":"10.1002/spy2.279","DOIUrl":null,"url":null,"abstract":"In this article, we utilize the notions of extended chaotic maps and group ring to propose an efficient procedure for online/offline identity based (ID‐based) signature. The main purpose of engaging chaotic maps in our procedure is to reduce its computational complexity while maintaining the desired security and the purpose of including algebraic structure of group ring is to shorten the signature. We show that under chosen message attack, our signature procedure is secure under unforgeability of ID‐based short signature. Most of the available online/offline signature procedures allow one time use of the offline preadministered information (offline stockpiling), but the proposed procedure grants multitime usage of the offline stockpiling. Therefore, the offline preadministered information can be reused by the signer in polynomial time. We show that our signature procedure is efficient, fast and provides signature of the small size. Finally, we compare our procedure with the several existing schemes in the literature and discuss its advantages.","PeriodicalId":29939,"journal":{"name":"Security and Privacy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient procedure for online/offline ID‐based signature using extended chaotic maps and group ring\",\"authors\":\"Gaurav Mittal, S. Sushanth Kumar, Sandeep Kumar\",\"doi\":\"10.1002/spy2.279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we utilize the notions of extended chaotic maps and group ring to propose an efficient procedure for online/offline identity based (ID‐based) signature. The main purpose of engaging chaotic maps in our procedure is to reduce its computational complexity while maintaining the desired security and the purpose of including algebraic structure of group ring is to shorten the signature. We show that under chosen message attack, our signature procedure is secure under unforgeability of ID‐based short signature. Most of the available online/offline signature procedures allow one time use of the offline preadministered information (offline stockpiling), but the proposed procedure grants multitime usage of the offline stockpiling. Therefore, the offline preadministered information can be reused by the signer in polynomial time. We show that our signature procedure is efficient, fast and provides signature of the small size. Finally, we compare our procedure with the several existing schemes in the literature and discuss its advantages.\",\"PeriodicalId\":29939,\"journal\":{\"name\":\"Security and Privacy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/spy2.279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spy2.279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用扩展混沌映射和群环的概念提出了一种基于在线/离线身份(ID - based)签名的有效方法。在我们的过程中引入混沌映射的主要目的是在保持期望的安全性的同时降低其计算复杂度,而包含群环的代数结构的主要目的是缩短签名。在选择消息攻击下,我们的签名过程在基于ID的短签名不可伪造性下是安全的。大多数可用的在线/离线签名过程允许一次性使用离线预先管理的信息(离线存储),但提议的过程允许多次使用离线存储。因此,离线预管理信息可以在多项式时间内被签名者重用。实验结果表明,该签名过程高效、快速,签名规模小。最后,我们将我们的程序与文献中现有的几种方案进行了比较,并讨论了其优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient procedure for online/offline ID‐based signature using extended chaotic maps and group ring
In this article, we utilize the notions of extended chaotic maps and group ring to propose an efficient procedure for online/offline identity based (ID‐based) signature. The main purpose of engaging chaotic maps in our procedure is to reduce its computational complexity while maintaining the desired security and the purpose of including algebraic structure of group ring is to shorten the signature. We show that under chosen message attack, our signature procedure is secure under unforgeability of ID‐based short signature. Most of the available online/offline signature procedures allow one time use of the offline preadministered information (offline stockpiling), but the proposed procedure grants multitime usage of the offline stockpiling. Therefore, the offline preadministered information can be reused by the signer in polynomial time. We show that our signature procedure is efficient, fast and provides signature of the small size. Finally, we compare our procedure with the several existing schemes in the literature and discuss its advantages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
5.30%
发文量
80
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信