线性分数阶动力系统可观察性和可控性的泛函方法

IF 0.4 Q4 MATHEMATICS
V. Govindaraj, R. K. George
{"title":"线性分数阶动力系统可观察性和可控性的泛函方法","authors":"V. Govindaraj, R. K. George","doi":"10.1080/1726037X.2017.1390191","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a set of equivalent conditions for observability and controllability of linear fractional dynamical systems represented by the fractional differential equation in the sense of Caputo fractional derivative of order α ϵ (0,1] are established by using the tools of linear bounded operators. Examples are included to illustrate the theoretical results.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"15 1","pages":"111 - 129"},"PeriodicalIF":0.4000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2017.1390191","citationCount":"4","resultStr":"{\"title\":\"Functional approach to observability and controllability of linear fractional dynamical systems\",\"authors\":\"V. Govindaraj, R. K. George\",\"doi\":\"10.1080/1726037X.2017.1390191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, a set of equivalent conditions for observability and controllability of linear fractional dynamical systems represented by the fractional differential equation in the sense of Caputo fractional derivative of order α ϵ (0,1] are established by using the tools of linear bounded operators. Examples are included to illustrate the theoretical results.\",\"PeriodicalId\":42788,\"journal\":{\"name\":\"Journal of Dynamical Systems and Geometric Theories\",\"volume\":\"15 1\",\"pages\":\"111 - 129\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1726037X.2017.1390191\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamical Systems and Geometric Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1726037X.2017.1390191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2017.1390191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要本文利用线性有界算子的工具,建立了一组由α(0,1)阶Caputo分数阶导数意义上的分数阶微分方程表示的线性分数阶动力系统可观测性和可控性的等价条件,并举例说明了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional approach to observability and controllability of linear fractional dynamical systems
Abstract In this paper, a set of equivalent conditions for observability and controllability of linear fractional dynamical systems represented by the fractional differential equation in the sense of Caputo fractional derivative of order α ϵ (0,1] are established by using the tools of linear bounded operators. Examples are included to illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信