高强混凝土配合比优化实例研究

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
T. Hadji, A. Attia
{"title":"高强混凝土配合比优化实例研究","authors":"T. Hadji, A. Attia","doi":"10.1108/mmms-07-2022-0132","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this work is to discuss high-strength concrete mix proportioning optimization. In this study, the three parameters (W/B ratio), coarse aggregate maximum size (Dmax) and superplasticizer dosage (Sp%) were considered.Design/methodology/approachA full factorial design with three factors and two levels was carried out. The statistical analysis and analysis of variance of statistical models were made easier with the aid of JMP7 software. The generated models explain how each parameter affects the mechanical compressive strength at 28 days (Cs28) and slump, and they have an excellent determination coefficient (R2 = 0.99). For each high-strength concrete (HSC) mixture, the slump was measured four times: at 0 min, 20 min, 40 min and 60 min.FindingsThe results show that HSC6 (0.35(W/B), 12.5(Dmax), 1.4(Sp%)) is the best HSC mixture, with a (Cs28) of 71.84 MPa, a slump of 22 cm, and slump loss of 3.5 cm in 60 min.Originality/valueQuantifying the impact of high-strength concrete mix components from a small number of experiments is made achievable by combining two methods: the Dreux-Gorisse method and the full factorial design approach. It's possible to tune the mix proportioning of the high-strength concrete for the desired slump and compressive mechanical strength thanks to the created statistical models.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case study of high strength concrete mix proportioning optimization\",\"authors\":\"T. Hadji, A. Attia\",\"doi\":\"10.1108/mmms-07-2022-0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this work is to discuss high-strength concrete mix proportioning optimization. In this study, the three parameters (W/B ratio), coarse aggregate maximum size (Dmax) and superplasticizer dosage (Sp%) were considered.Design/methodology/approachA full factorial design with three factors and two levels was carried out. The statistical analysis and analysis of variance of statistical models were made easier with the aid of JMP7 software. The generated models explain how each parameter affects the mechanical compressive strength at 28 days (Cs28) and slump, and they have an excellent determination coefficient (R2 = 0.99). For each high-strength concrete (HSC) mixture, the slump was measured four times: at 0 min, 20 min, 40 min and 60 min.FindingsThe results show that HSC6 (0.35(W/B), 12.5(Dmax), 1.4(Sp%)) is the best HSC mixture, with a (Cs28) of 71.84 MPa, a slump of 22 cm, and slump loss of 3.5 cm in 60 min.Originality/valueQuantifying the impact of high-strength concrete mix components from a small number of experiments is made achievable by combining two methods: the Dreux-Gorisse method and the full factorial design approach. It's possible to tune the mix proportioning of the high-strength concrete for the desired slump and compressive mechanical strength thanks to the created statistical models.\",\"PeriodicalId\":46760,\"journal\":{\"name\":\"Multidiscipline Modeling in Materials and Structures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multidiscipline Modeling in Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/mmms-07-2022-0132\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/mmms-07-2022-0132","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的探讨高强混凝土配合比的优化。本研究考虑了三个参数(W/B比)、粗集料最大粒径(Dmax)和高效减水剂用量(Sp%)。设计/方法论/方法采用三因素两水平的全因子设计。借助JMP7软件,统计模型的统计分析和方差分析变得更加容易。生成的模型解释了每个参数如何影响28天的机械抗压强度(Cs28)和坍落度,它们具有很好的决定系数(R2=0.99)。对于每种高强混凝土(HSC)混合物,坍落度分别在0分钟、20分钟、40分钟和60分钟测得四次。结果表明,HSC6(0.35(W/B)、12.5(Dmax),1.4(Sp%))是最好的HSC混合物,其(Cs28)为71.84MPa,坍落度为22cm,60分钟内坍落度损失为3.5cm。原始性/价值通过结合两种方法:Dreux Gorisse方法和全因子设计方法,可以从少量实验中量化高强度混凝土混合料成分的影响。由于创建了统计模型,可以根据所需的坍落度和抗压机械强度调整高强度混凝土的配合比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Case study of high strength concrete mix proportioning optimization
PurposeThe purpose of this work is to discuss high-strength concrete mix proportioning optimization. In this study, the three parameters (W/B ratio), coarse aggregate maximum size (Dmax) and superplasticizer dosage (Sp%) were considered.Design/methodology/approachA full factorial design with three factors and two levels was carried out. The statistical analysis and analysis of variance of statistical models were made easier with the aid of JMP7 software. The generated models explain how each parameter affects the mechanical compressive strength at 28 days (Cs28) and slump, and they have an excellent determination coefficient (R2 = 0.99). For each high-strength concrete (HSC) mixture, the slump was measured four times: at 0 min, 20 min, 40 min and 60 min.FindingsThe results show that HSC6 (0.35(W/B), 12.5(Dmax), 1.4(Sp%)) is the best HSC mixture, with a (Cs28) of 71.84 MPa, a slump of 22 cm, and slump loss of 3.5 cm in 60 min.Originality/valueQuantifying the impact of high-strength concrete mix components from a small number of experiments is made achievable by combining two methods: the Dreux-Gorisse method and the full factorial design approach. It's possible to tune the mix proportioning of the high-strength concrete for the desired slump and compressive mechanical strength thanks to the created statistical models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
60
期刊介绍: Multidiscipline Modeling in Materials and Structures is published by Emerald Group Publishing Limited from 2010
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信