{"title":"KVLCC2在有螺旋桨和无螺旋桨波浪中的附加阻力和耐波性研究","authors":"Hassiba Ouargli, B. Hamoudi","doi":"10.12989/OSE.2021.11.2.123","DOIUrl":null,"url":null,"abstract":"Numerical simulation of a full-scale ship model, KVLCC2, has been conducted applying the Reynolds Averaged Navier-Stokes (RANS) approach using the STARCCM+ commercial computational fluid dynamics (CFD) software to calculate total resistance, seakeeping and Pitch Moments. Results are obtained for the speed of 15.5 Knots under different sea conditions (calm water, regular waves and irregular waves), The total resistance calculated for the KVLCC2 ship hull in calm water is in a good agreement with the results from experiments and the results for motion (heave and pitch) and added resistance in waves were compared to numerical and experimental findings from previous research with good agreement. In addition to wave excitations, the full-scale ship model was subjected to propeller excitations using the virtual disk model from the CFD software. The body force propeller method, which simplified the full propeller characteristic of the KVLCC2 into a resultant body force, is applied to the virtual disk model. Results are compared with results from the hull-only model. A comparison of the wake results with previous work is also presented.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"11 1","pages":"123"},"PeriodicalIF":0.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of added resistance and seakeeping of KVLCC2 in waves with and without propeller\",\"authors\":\"Hassiba Ouargli, B. Hamoudi\",\"doi\":\"10.12989/OSE.2021.11.2.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical simulation of a full-scale ship model, KVLCC2, has been conducted applying the Reynolds Averaged Navier-Stokes (RANS) approach using the STARCCM+ commercial computational fluid dynamics (CFD) software to calculate total resistance, seakeeping and Pitch Moments. Results are obtained for the speed of 15.5 Knots under different sea conditions (calm water, regular waves and irregular waves), The total resistance calculated for the KVLCC2 ship hull in calm water is in a good agreement with the results from experiments and the results for motion (heave and pitch) and added resistance in waves were compared to numerical and experimental findings from previous research with good agreement. In addition to wave excitations, the full-scale ship model was subjected to propeller excitations using the virtual disk model from the CFD software. The body force propeller method, which simplified the full propeller characteristic of the KVLCC2 into a resultant body force, is applied to the virtual disk model. Results are compared with results from the hull-only model. A comparison of the wake results with previous work is also presented.\",\"PeriodicalId\":44219,\"journal\":{\"name\":\"Ocean Systems Engineering-An International Journal\",\"volume\":\"11 1\",\"pages\":\"123\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Systems Engineering-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12989/OSE.2021.11.2.123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, OCEAN\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2021.11.2.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
Study of added resistance and seakeeping of KVLCC2 in waves with and without propeller
Numerical simulation of a full-scale ship model, KVLCC2, has been conducted applying the Reynolds Averaged Navier-Stokes (RANS) approach using the STARCCM+ commercial computational fluid dynamics (CFD) software to calculate total resistance, seakeeping and Pitch Moments. Results are obtained for the speed of 15.5 Knots under different sea conditions (calm water, regular waves and irregular waves), The total resistance calculated for the KVLCC2 ship hull in calm water is in a good agreement with the results from experiments and the results for motion (heave and pitch) and added resistance in waves were compared to numerical and experimental findings from previous research with good agreement. In addition to wave excitations, the full-scale ship model was subjected to propeller excitations using the virtual disk model from the CFD software. The body force propeller method, which simplified the full propeller characteristic of the KVLCC2 into a resultant body force, is applied to the virtual disk model. Results are compared with results from the hull-only model. A comparison of the wake results with previous work is also presented.
期刊介绍:
The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.