基于支持向量机的掘进机掘进速度预测

IF 0.1 Q4 EDUCATION & EDUCATIONAL RESEARCH
Alireza Afradi, A. Ebrahimabadi, Tahereh Hallajian
{"title":"基于支持向量机的掘进机掘进速度预测","authors":"Alireza Afradi, A. Ebrahimabadi, Tahereh Hallajian","doi":"10.26895/geosaberes.v11i0.1048","DOIUrl":null,"url":null,"abstract":"One of the most important issues in mechanized excavating is to predict the TBM penetration rate. Understanding the factors influencing the rate of penetration is important, which allows for a more accurate estimation of the stopping and excavating times and operating costs. In this study, Input and output parameters including Uniaxial Compressive Strength (UCS), Brazilian Tensile Strength (BTS), Peak Slope Index (PSI), Distance between Planes of Weakness (DPW), Alpha angle and Rate of Penetration (ROP) (m/hr) in the Queens Water Tunnel using support vector machine .Results showed that prediction of penetration rate for Support Vector Machine (SVM) method is R2 = 0.9678 and RMSE = 0.064778, According to the results, Support Vector Machine (SVM) is effective and has high accuracy.","PeriodicalId":41550,"journal":{"name":"Geosaberes","volume":"11 1","pages":"467"},"PeriodicalIF":0.1000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PREDICTION OF TBM PENETRATION RATE USING SUPPORT VECTOR MACHINE\",\"authors\":\"Alireza Afradi, A. Ebrahimabadi, Tahereh Hallajian\",\"doi\":\"10.26895/geosaberes.v11i0.1048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most important issues in mechanized excavating is to predict the TBM penetration rate. Understanding the factors influencing the rate of penetration is important, which allows for a more accurate estimation of the stopping and excavating times and operating costs. In this study, Input and output parameters including Uniaxial Compressive Strength (UCS), Brazilian Tensile Strength (BTS), Peak Slope Index (PSI), Distance between Planes of Weakness (DPW), Alpha angle and Rate of Penetration (ROP) (m/hr) in the Queens Water Tunnel using support vector machine .Results showed that prediction of penetration rate for Support Vector Machine (SVM) method is R2 = 0.9678 and RMSE = 0.064778, According to the results, Support Vector Machine (SVM) is effective and has high accuracy.\",\"PeriodicalId\":41550,\"journal\":{\"name\":\"Geosaberes\",\"volume\":\"11 1\",\"pages\":\"467\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosaberes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26895/geosaberes.v11i0.1048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosaberes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26895/geosaberes.v11i0.1048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 2

摘要

机械化挖掘中最重要的问题之一是预测TBM的穿透率。了解影响穿透率的因素很重要,这可以更准确地估计停止和挖掘时间以及运营成本。在本研究中,输入和输出参数包括单轴抗压强度(UCS)、巴西抗拉强度(BTS)、峰值斜率指数(PSI)、薄弱平面之间的距离(DPW),结果表明,支持向量机方法预测Queens Water Tunnel的渗透率R2=0.9678,RMSE=0.067478。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PREDICTION OF TBM PENETRATION RATE USING SUPPORT VECTOR MACHINE
One of the most important issues in mechanized excavating is to predict the TBM penetration rate. Understanding the factors influencing the rate of penetration is important, which allows for a more accurate estimation of the stopping and excavating times and operating costs. In this study, Input and output parameters including Uniaxial Compressive Strength (UCS), Brazilian Tensile Strength (BTS), Peak Slope Index (PSI), Distance between Planes of Weakness (DPW), Alpha angle and Rate of Penetration (ROP) (m/hr) in the Queens Water Tunnel using support vector machine .Results showed that prediction of penetration rate for Support Vector Machine (SVM) method is R2 = 0.9678 and RMSE = 0.064778, According to the results, Support Vector Machine (SVM) is effective and has high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geosaberes
Geosaberes EDUCATION & EDUCATIONAL RESEARCH-
自引率
0.00%
发文量
11
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信