随机图k核的奇异性

IF 2.3 1区 数学 Q1 MATHEMATICS
Asaf Ferber, Matthew Kwan, A. Sah, Mehtaab Sawhney
{"title":"随机图k核的奇异性","authors":"Asaf Ferber, Matthew Kwan, A. Sah, Mehtaab Sawhney","doi":"10.1215/00127094-2022-0060","DOIUrl":null,"url":null,"abstract":"Very sparse random graphs are known to typically be singular (i.e., have singular adjacency matrix), due to the presence of\"low-degree dependencies'' such as isolated vertices and pairs of degree-1 vertices with the same neighbourhood. We prove that these kinds of dependencies are in some sense the only causes of singularity: for constants $k\\ge 3$ and $\\lambda>0$, an Erd\\H os--R\\'enyi random graph $G\\sim\\mathbb{G}(n,\\lambda/n)$ with $n$ vertices and edge probability $\\lambda/n$ typically has the property that its $k$-core (its largest subgraph with minimum degree at least $k$) is nonsingular. This resolves a conjecture of Vu from the 2014 International Congress of Mathematicians, and adds to a short list of known nonsingularity theorems for\"extremely sparse'' random matrices with density $O(1/n)$. A key aspect of our proof is a technique to extract high-degree vertices and use them to\"boost'' the rank, starting from approximate rank bounds obtainable from (non-quantitative) spectral convergence machinery due to Bordenave, Lelarge and Salez.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Singularity of the k-core of a random graph\",\"authors\":\"Asaf Ferber, Matthew Kwan, A. Sah, Mehtaab Sawhney\",\"doi\":\"10.1215/00127094-2022-0060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Very sparse random graphs are known to typically be singular (i.e., have singular adjacency matrix), due to the presence of\\\"low-degree dependencies'' such as isolated vertices and pairs of degree-1 vertices with the same neighbourhood. We prove that these kinds of dependencies are in some sense the only causes of singularity: for constants $k\\\\ge 3$ and $\\\\lambda>0$, an Erd\\\\H os--R\\\\'enyi random graph $G\\\\sim\\\\mathbb{G}(n,\\\\lambda/n)$ with $n$ vertices and edge probability $\\\\lambda/n$ typically has the property that its $k$-core (its largest subgraph with minimum degree at least $k$) is nonsingular. This resolves a conjecture of Vu from the 2014 International Congress of Mathematicians, and adds to a short list of known nonsingularity theorems for\\\"extremely sparse'' random matrices with density $O(1/n)$. A key aspect of our proof is a technique to extract high-degree vertices and use them to\\\"boost'' the rank, starting from approximate rank bounds obtainable from (non-quantitative) spectral convergence machinery due to Bordenave, Lelarge and Salez.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0060\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0060","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

已知非常稀疏的随机图通常是奇异的(即具有奇异邻接矩阵),由于存在“低度依赖性”,如孤立顶点和具有相同邻域的一对1度顶点。我们证明了这些类型的依赖性在某种意义上是奇异性的唯一原因:对于常数$k\ge3$和$\lambda>0$,Erd\H os-R\'enyi随机图$G\sim\mathbb{G}(n,\lambda/n)具有$n$顶点和边概率$\lambda/n$的$通常具有其$k$核(其最小度至少为$k$的最大子图)是非奇异的性质。这解决了2014年国际数学家大会上Vu的一个猜想,并为密度为$O(1/n)$的“极稀疏”随机矩阵的已知非奇异性定理添加了一个简短的列表。我们证明的一个关键方面是提取高阶顶点并使用它们来“提高”秩的技术,从由Bordnave、Lelarge和Salez引起的(非定量的)谱收敛机制可获得的近似秩界开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singularity of the k-core of a random graph
Very sparse random graphs are known to typically be singular (i.e., have singular adjacency matrix), due to the presence of"low-degree dependencies'' such as isolated vertices and pairs of degree-1 vertices with the same neighbourhood. We prove that these kinds of dependencies are in some sense the only causes of singularity: for constants $k\ge 3$ and $\lambda>0$, an Erd\H os--R\'enyi random graph $G\sim\mathbb{G}(n,\lambda/n)$ with $n$ vertices and edge probability $\lambda/n$ typically has the property that its $k$-core (its largest subgraph with minimum degree at least $k$) is nonsingular. This resolves a conjecture of Vu from the 2014 International Congress of Mathematicians, and adds to a short list of known nonsingularity theorems for"extremely sparse'' random matrices with density $O(1/n)$. A key aspect of our proof is a technique to extract high-degree vertices and use them to"boost'' the rank, starting from approximate rank bounds obtainable from (non-quantitative) spectral convergence machinery due to Bordenave, Lelarge and Salez.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信