{"title":"核方法的内维数自适应划分","authors":"Thomas Hamm, Ingo Steinwart","doi":"10.1137/21m1435690","DOIUrl":null,"url":null,"abstract":"We prove minimax optimal learning rates for kernel ridge regression, resp. support vector machines based on a data dependent partition of the input space, where the dependence of the dimension of the input space is replaced by the fractal dimension of the support of the data generating distribution. We further show that these optimal rates can be achieved by a training validation procedure without any prior knowledge on this intrinsic dimension of the data. Finally, we conduct extensive experiments which demonstrate that our considered learning methods are actually able to generalize from a dataset that is non-trivially embedded in a much higher dimensional space just as well as from the original dataset.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Intrinsic Dimension Adaptive Partitioning for Kernel Methods\",\"authors\":\"Thomas Hamm, Ingo Steinwart\",\"doi\":\"10.1137/21m1435690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove minimax optimal learning rates for kernel ridge regression, resp. support vector machines based on a data dependent partition of the input space, where the dependence of the dimension of the input space is replaced by the fractal dimension of the support of the data generating distribution. We further show that these optimal rates can be achieved by a training validation procedure without any prior knowledge on this intrinsic dimension of the data. Finally, we conduct extensive experiments which demonstrate that our considered learning methods are actually able to generalize from a dataset that is non-trivially embedded in a much higher dimensional space just as well as from the original dataset.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1435690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1435690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Intrinsic Dimension Adaptive Partitioning for Kernel Methods
We prove minimax optimal learning rates for kernel ridge regression, resp. support vector machines based on a data dependent partition of the input space, where the dependence of the dimension of the input space is replaced by the fractal dimension of the support of the data generating distribution. We further show that these optimal rates can be achieved by a training validation procedure without any prior knowledge on this intrinsic dimension of the data. Finally, we conduct extensive experiments which demonstrate that our considered learning methods are actually able to generalize from a dataset that is non-trivially embedded in a much higher dimensional space just as well as from the original dataset.