{"title":"卷积和递归神经网络在人脸图像分析中的应用","authors":"Kıvanç Yüksel, W. Skarbek","doi":"10.2478/fcds-2019-0017","DOIUrl":null,"url":null,"abstract":"Abstract In the presented research two Deep Neural Network (DNN) models for face image analysis were developed. The first one detects eyes, nose and mouth and it is based on a moderate size Convolutional Neural Network (CNN) while the second one identifies 68 landmarks resulting in a novel Face Alignment Network composed of a CNN and a recurrent neural network. The Face Parts Detector inputs face image and outputs the pixel coordinates of bounding boxes for detected facial parts. The Face Alignment Network extracts deep features in CNN module while in the recurrent module it generates 68 facial landmarks using not only this deep features, but also the geometry of facial parts. Both methods are robust to varying head poses and changing light conditions.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"44 1","pages":"331 - 347"},"PeriodicalIF":1.8000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Convolutional and Recurrent Neural Networks for Face Image Analysis\",\"authors\":\"Kıvanç Yüksel, W. Skarbek\",\"doi\":\"10.2478/fcds-2019-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the presented research two Deep Neural Network (DNN) models for face image analysis were developed. The first one detects eyes, nose and mouth and it is based on a moderate size Convolutional Neural Network (CNN) while the second one identifies 68 landmarks resulting in a novel Face Alignment Network composed of a CNN and a recurrent neural network. The Face Parts Detector inputs face image and outputs the pixel coordinates of bounding boxes for detected facial parts. The Face Alignment Network extracts deep features in CNN module while in the recurrent module it generates 68 facial landmarks using not only this deep features, but also the geometry of facial parts. Both methods are robust to varying head poses and changing light conditions.\",\"PeriodicalId\":42909,\"journal\":{\"name\":\"Foundations of Computing and Decision Sciences\",\"volume\":\"44 1\",\"pages\":\"331 - 347\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of Computing and Decision Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/fcds-2019-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2019-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Convolutional and Recurrent Neural Networks for Face Image Analysis
Abstract In the presented research two Deep Neural Network (DNN) models for face image analysis were developed. The first one detects eyes, nose and mouth and it is based on a moderate size Convolutional Neural Network (CNN) while the second one identifies 68 landmarks resulting in a novel Face Alignment Network composed of a CNN and a recurrent neural network. The Face Parts Detector inputs face image and outputs the pixel coordinates of bounding boxes for detected facial parts. The Face Alignment Network extracts deep features in CNN module while in the recurrent module it generates 68 facial landmarks using not only this deep features, but also the geometry of facial parts. Both methods are robust to varying head poses and changing light conditions.