具有多孔介质-细胞扩散和一般灵敏度的三维趋化性Stokes系统的全局有界性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yu Tian, Zhaoyin Xiang
{"title":"具有多孔介质-细胞扩散和一般灵敏度的三维趋化性Stokes系统的全局有界性","authors":"Yu Tian, Zhaoyin Xiang","doi":"10.1515/anona-2022-0228","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we will develop an analytical approach to construct the global bounded weak solutions to the initial-boundary value problem of a three-dimensional chemotaxis-Stokes system with porous medium cell diffusion Δ n m \\Delta {n}^{m} for m ≥ 65 63 m\\ge \\frac{65}{63} and general sensitivity. In particular, this extended the precedent results which asserted global solvability within the larger range m > 7 6 m\\gt \\frac{7}{6} for general sensitivity (M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. 54 (2015), 3789–3828) or m > 9 8 m\\gt \\frac{9}{8} for scalar sensitivity (M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differ. Equ. 264 (2018), 6109–6151). Our proof is based on a new observation on the quasi-energy-type functional and on an induction argument.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global boundedness to a 3D chemotaxis-Stokes system with porous medium cell diffusion and general sensitivity\",\"authors\":\"Yu Tian, Zhaoyin Xiang\",\"doi\":\"10.1515/anona-2022-0228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we will develop an analytical approach to construct the global bounded weak solutions to the initial-boundary value problem of a three-dimensional chemotaxis-Stokes system with porous medium cell diffusion Δ n m \\\\Delta {n}^{m} for m ≥ 65 63 m\\\\ge \\\\frac{65}{63} and general sensitivity. In particular, this extended the precedent results which asserted global solvability within the larger range m > 7 6 m\\\\gt \\\\frac{7}{6} for general sensitivity (M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. 54 (2015), 3789–3828) or m > 9 8 m\\\\gt \\\\frac{9}{8} for scalar sensitivity (M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differ. Equ. 264 (2018), 6109–6151). Our proof is based on a new observation on the quasi-energy-type functional and on an induction argument.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0228\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0228","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

摘要在本文中,我们将发展一种分析方法来构造具有多孔介质细胞扩散Δn m\Delta{n}^{m}的三维趋化性Stokes系统初始边值问题的全局有界弱解,对于m≥65 63 m\ge\frac{65}{63}和一般灵敏度。特别是,这扩展了先前的结果,该结果断言在一般灵敏度的较大范围m>7.6 m\gt\frac{7}{6}内的全局可解性(m.Winkler,具有非线性扩散和一般灵敏度的三维趋化性Stokes系统中的有界性和大时间行为,Calc.Var.54(2015),3789–3828)或m>9 8 m\gt\frac{9}{8}的标量灵敏度(m.Winkler,具有弱强扩散增强的简并趋化性Stokes系统中的全局存在和稳定,J.Differ.Equ.264(2018),6109–6151)。我们的证明是基于对拟能量型泛函的一个新的观察和一个归纳论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global boundedness to a 3D chemotaxis-Stokes system with porous medium cell diffusion and general sensitivity
Abstract In this article, we will develop an analytical approach to construct the global bounded weak solutions to the initial-boundary value problem of a three-dimensional chemotaxis-Stokes system with porous medium cell diffusion Δ n m \Delta {n}^{m} for m ≥ 65 63 m\ge \frac{65}{63} and general sensitivity. In particular, this extended the precedent results which asserted global solvability within the larger range m > 7 6 m\gt \frac{7}{6} for general sensitivity (M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. 54 (2015), 3789–3828) or m > 9 8 m\gt \frac{9}{8} for scalar sensitivity (M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differ. Equ. 264 (2018), 6109–6151). Our proof is based on a new observation on the quasi-energy-type functional and on an induction argument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信