具有多孔介质-细胞扩散和一般灵敏度的三维趋化性Stokes系统的全局有界性

IF 3.2 1区 数学 Q1 MATHEMATICS
Yu Tian, Zhaoyin Xiang
{"title":"具有多孔介质-细胞扩散和一般灵敏度的三维趋化性Stokes系统的全局有界性","authors":"Yu Tian, Zhaoyin Xiang","doi":"10.1515/anona-2022-0228","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we will develop an analytical approach to construct the global bounded weak solutions to the initial-boundary value problem of a three-dimensional chemotaxis-Stokes system with porous medium cell diffusion Δ n m \\Delta {n}^{m} for m ≥ 65 63 m\\ge \\frac{65}{63} and general sensitivity. In particular, this extended the precedent results which asserted global solvability within the larger range m > 7 6 m\\gt \\frac{7}{6} for general sensitivity (M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. 54 (2015), 3789–3828) or m > 9 8 m\\gt \\frac{9}{8} for scalar sensitivity (M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differ. Equ. 264 (2018), 6109–6151). Our proof is based on a new observation on the quasi-energy-type functional and on an induction argument.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"12 1","pages":"23 - 53"},"PeriodicalIF":3.2000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global boundedness to a 3D chemotaxis-Stokes system with porous medium cell diffusion and general sensitivity\",\"authors\":\"Yu Tian, Zhaoyin Xiang\",\"doi\":\"10.1515/anona-2022-0228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we will develop an analytical approach to construct the global bounded weak solutions to the initial-boundary value problem of a three-dimensional chemotaxis-Stokes system with porous medium cell diffusion Δ n m \\\\Delta {n}^{m} for m ≥ 65 63 m\\\\ge \\\\frac{65}{63} and general sensitivity. In particular, this extended the precedent results which asserted global solvability within the larger range m > 7 6 m\\\\gt \\\\frac{7}{6} for general sensitivity (M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. 54 (2015), 3789–3828) or m > 9 8 m\\\\gt \\\\frac{9}{8} for scalar sensitivity (M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differ. Equ. 264 (2018), 6109–6151). Our proof is based on a new observation on the quasi-energy-type functional and on an induction argument.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\"12 1\",\"pages\":\"23 - 53\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0228\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0228","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要在本文中,我们将发展一种分析方法来构造具有多孔介质细胞扩散Δn m\Delta{n}^{m}的三维趋化性Stokes系统初始边值问题的全局有界弱解,对于m≥65 63 m\ge\frac{65}{63}和一般灵敏度。特别是,这扩展了先前的结果,该结果断言在一般灵敏度的较大范围m>7.6 m\gt\frac{7}{6}内的全局可解性(m.Winkler,具有非线性扩散和一般灵敏度的三维趋化性Stokes系统中的有界性和大时间行为,Calc.Var.54(2015),3789–3828)或m>9 8 m\gt\frac{9}{8}的标量灵敏度(m.Winkler,具有弱强扩散增强的简并趋化性Stokes系统中的全局存在和稳定,J.Differ.Equ.264(2018),6109–6151)。我们的证明是基于对拟能量型泛函的一个新的观察和一个归纳论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global boundedness to a 3D chemotaxis-Stokes system with porous medium cell diffusion and general sensitivity
Abstract In this article, we will develop an analytical approach to construct the global bounded weak solutions to the initial-boundary value problem of a three-dimensional chemotaxis-Stokes system with porous medium cell diffusion Δ n m \Delta {n}^{m} for m ≥ 65 63 m\ge \frac{65}{63} and general sensitivity. In particular, this extended the precedent results which asserted global solvability within the larger range m > 7 6 m\gt \frac{7}{6} for general sensitivity (M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. 54 (2015), 3789–3828) or m > 9 8 m\gt \frac{9}{8} for scalar sensitivity (M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differ. Equ. 264 (2018), 6109–6151). Our proof is based on a new observation on the quasi-energy-type functional and on an induction argument.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信