{"title":"具有多孔介质-细胞扩散和一般灵敏度的三维趋化性Stokes系统的全局有界性","authors":"Yu Tian, Zhaoyin Xiang","doi":"10.1515/anona-2022-0228","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we will develop an analytical approach to construct the global bounded weak solutions to the initial-boundary value problem of a three-dimensional chemotaxis-Stokes system with porous medium cell diffusion Δ n m \\Delta {n}^{m} for m ≥ 65 63 m\\ge \\frac{65}{63} and general sensitivity. In particular, this extended the precedent results which asserted global solvability within the larger range m > 7 6 m\\gt \\frac{7}{6} for general sensitivity (M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. 54 (2015), 3789–3828) or m > 9 8 m\\gt \\frac{9}{8} for scalar sensitivity (M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differ. Equ. 264 (2018), 6109–6151). Our proof is based on a new observation on the quasi-energy-type functional and on an induction argument.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global boundedness to a 3D chemotaxis-Stokes system with porous medium cell diffusion and general sensitivity\",\"authors\":\"Yu Tian, Zhaoyin Xiang\",\"doi\":\"10.1515/anona-2022-0228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we will develop an analytical approach to construct the global bounded weak solutions to the initial-boundary value problem of a three-dimensional chemotaxis-Stokes system with porous medium cell diffusion Δ n m \\\\Delta {n}^{m} for m ≥ 65 63 m\\\\ge \\\\frac{65}{63} and general sensitivity. In particular, this extended the precedent results which asserted global solvability within the larger range m > 7 6 m\\\\gt \\\\frac{7}{6} for general sensitivity (M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. 54 (2015), 3789–3828) or m > 9 8 m\\\\gt \\\\frac{9}{8} for scalar sensitivity (M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differ. Equ. 264 (2018), 6109–6151). Our proof is based on a new observation on the quasi-energy-type functional and on an induction argument.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0228\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0228","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Global boundedness to a 3D chemotaxis-Stokes system with porous medium cell diffusion and general sensitivity
Abstract In this article, we will develop an analytical approach to construct the global bounded weak solutions to the initial-boundary value problem of a three-dimensional chemotaxis-Stokes system with porous medium cell diffusion Δ n m \Delta {n}^{m} for m ≥ 65 63 m\ge \frac{65}{63} and general sensitivity. In particular, this extended the precedent results which asserted global solvability within the larger range m > 7 6 m\gt \frac{7}{6} for general sensitivity (M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity, Calc. Var. 54 (2015), 3789–3828) or m > 9 8 m\gt \frac{9}{8} for scalar sensitivity (M. Winkler, Global existence and stabilization in a degenerate chemotaxis-Stokes system with mildly strong diffusion enhancement, J. Differ. Equ. 264 (2018), 6109–6151). Our proof is based on a new observation on the quasi-energy-type functional and on an induction argument.