T. S. Jepsen, Christian S. Jensen, Thomas D. Nielsen
{"title":"UniTE——两全其美:统一基于函数拟合和聚合的行程时间和行程速度估计方法","authors":"T. S. Jepsen, Christian S. Jensen, Thomas D. Nielsen","doi":"10.1145/3517335","DOIUrl":null,"url":null,"abstract":"Travel time and speed estimation are part of many intelligent transportation applications. Existing estimation approaches rely on either function fitting or data aggregation and represent different tradeoffs between generalizability and accuracy. Function-fitting approaches learn functions that map feature vectors of, e.g., routes to travel time or speed estimates, which enables generalization to unseen routes. However, mapping functions are imperfect and offer poor accuracy in practice. Aggregation-based approaches instead form estimates by aggregating historical data, e.g., traversal data for routes. This enables very high accuracy given sufficient data. However, they rely on simplistic heuristics when insufficient data is available, yielding poor generalizability. We present a Unifying approach to Travel time and speed Estimation (UniTE) that combines function-fitting and aggregation-based approaches into a unified framework that aims to achieve the generalizability of function-fitting approaches and the accuracy of aggregation-based approaches when data is available. We demonstrate empirically that an instance of UniTE can improve the accuracies of travel speed and travel time estimation by 40–64% and 3–23%, respectively, compared to using only function fitting or data aggregation.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":"8 1","pages":"1 - 26"},"PeriodicalIF":1.2000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"UniTE—The Best of Both Worlds: Unifying Function-fitting and Aggregation-based Approaches to Travel Time and Travel Speed Estimation\",\"authors\":\"T. S. Jepsen, Christian S. Jensen, Thomas D. Nielsen\",\"doi\":\"10.1145/3517335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Travel time and speed estimation are part of many intelligent transportation applications. Existing estimation approaches rely on either function fitting or data aggregation and represent different tradeoffs between generalizability and accuracy. Function-fitting approaches learn functions that map feature vectors of, e.g., routes to travel time or speed estimates, which enables generalization to unseen routes. However, mapping functions are imperfect and offer poor accuracy in practice. Aggregation-based approaches instead form estimates by aggregating historical data, e.g., traversal data for routes. This enables very high accuracy given sufficient data. However, they rely on simplistic heuristics when insufficient data is available, yielding poor generalizability. We present a Unifying approach to Travel time and speed Estimation (UniTE) that combines function-fitting and aggregation-based approaches into a unified framework that aims to achieve the generalizability of function-fitting approaches and the accuracy of aggregation-based approaches when data is available. We demonstrate empirically that an instance of UniTE can improve the accuracies of travel speed and travel time estimation by 40–64% and 3–23%, respectively, compared to using only function fitting or data aggregation.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":\"8 1\",\"pages\":\"1 - 26\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3517335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
UniTE—The Best of Both Worlds: Unifying Function-fitting and Aggregation-based Approaches to Travel Time and Travel Speed Estimation
Travel time and speed estimation are part of many intelligent transportation applications. Existing estimation approaches rely on either function fitting or data aggregation and represent different tradeoffs between generalizability and accuracy. Function-fitting approaches learn functions that map feature vectors of, e.g., routes to travel time or speed estimates, which enables generalization to unseen routes. However, mapping functions are imperfect and offer poor accuracy in practice. Aggregation-based approaches instead form estimates by aggregating historical data, e.g., traversal data for routes. This enables very high accuracy given sufficient data. However, they rely on simplistic heuristics when insufficient data is available, yielding poor generalizability. We present a Unifying approach to Travel time and speed Estimation (UniTE) that combines function-fitting and aggregation-based approaches into a unified framework that aims to achieve the generalizability of function-fitting approaches and the accuracy of aggregation-based approaches when data is available. We demonstrate empirically that an instance of UniTE can improve the accuracies of travel speed and travel time estimation by 40–64% and 3–23%, respectively, compared to using only function fitting or data aggregation.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.