强极性非负混合加权齐次面型牛顿非退化混合多项式的求解

IF 0.4 4区 数学 Q4 MATHEMATICS
Sachiko Saito, Kosei Takashimizu
{"title":"强极性非负混合加权齐次面型牛顿非退化混合多项式的求解","authors":"Sachiko Saito, Kosei Takashimizu","doi":"10.2996/kmj/kmj44304","DOIUrl":null,"url":null,"abstract":"Let f(z, z̄) be a convenient Newton non-degenerate mixed polynomial with strongly polar nonnegative mixed weighted homogeneous face functions. We consider a convenient regular simplicial cone subdivision Σ∗ which is admissible for f and take the toric modification π̂ : X → C associated with Σ∗. We show that the toric modification resolves topologically the singularity of the mixed hypersurface germ defined by f(z, z̄) under the Assumption(*) (Theorem 32). This result is an extension of the first part of Theorem 11 ([4]) by M. Oka, which studies strongly polar positive cases, to strongly polar non-negative cases. We also consider some typical examples (§9).","PeriodicalId":54747,"journal":{"name":"Kodai Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resolutions of Newton non-degenerate mixed polynomials of strongly polar non-negative mixed weighted homogeneous face type\",\"authors\":\"Sachiko Saito, Kosei Takashimizu\",\"doi\":\"10.2996/kmj/kmj44304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let f(z, z̄) be a convenient Newton non-degenerate mixed polynomial with strongly polar nonnegative mixed weighted homogeneous face functions. We consider a convenient regular simplicial cone subdivision Σ∗ which is admissible for f and take the toric modification π̂ : X → C associated with Σ∗. We show that the toric modification resolves topologically the singularity of the mixed hypersurface germ defined by f(z, z̄) under the Assumption(*) (Theorem 32). This result is an extension of the first part of Theorem 11 ([4]) by M. Oka, which studies strongly polar positive cases, to strongly polar non-negative cases. We also consider some typical examples (§9).\",\"PeriodicalId\":54747,\"journal\":{\"name\":\"Kodai Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kodai Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2996/kmj/kmj44304\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2996/kmj/kmj44304","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设f(z,z̄)是一个方便的具有强极性非负混合加权齐次面函数的牛顿非退化混合多项式。我们考虑了一个方便的正则单锥细分∑*,它对f是可容许的,并取复曲面修改πõ:X→ C与∑*相关。我们证明复曲面修正在拓扑上解决了假设(*)下由f(z,z̄)定义的混合超曲面胚的奇异性(定理32)。这一结果是M.Oka对定理11([4])第一部分的扩展,该部分研究强极性阳性情况,到强极性非阴性情况。我们还考虑了一些典型的例子(§9)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resolutions of Newton non-degenerate mixed polynomials of strongly polar non-negative mixed weighted homogeneous face type
Let f(z, z̄) be a convenient Newton non-degenerate mixed polynomial with strongly polar nonnegative mixed weighted homogeneous face functions. We consider a convenient regular simplicial cone subdivision Σ∗ which is admissible for f and take the toric modification π̂ : X → C associated with Σ∗. We show that the toric modification resolves topologically the singularity of the mixed hypersurface germ defined by f(z, z̄) under the Assumption(*) (Theorem 32). This result is an extension of the first part of Theorem 11 ([4]) by M. Oka, which studies strongly polar positive cases, to strongly polar non-negative cases. We also consider some typical examples (§9).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Kodai Mathematical Journal is edited by the Department of Mathematics, Tokyo Institute of Technology. The journal was issued from 1949 until 1977 as Kodai Mathematical Seminar Reports, and was renewed in 1978 under the present name. The journal is published three times yearly and includes original papers in mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信