单调双层平衡问题的惯性次梯度超梯度规则

IF 0.9 4区 数学 Q2 MATHEMATICS
L. Ceng, A. Petruşel, X. Qin, J. Yao
{"title":"单调双层平衡问题的惯性次梯度超梯度规则","authors":"L. Ceng, A. Petruşel, X. Qin, J. Yao","doi":"10.24193/fpt-ro.2023.1.05","DOIUrl":null,"url":null,"abstract":". In a real Hilbert space, let the GSVI and CFPP represent a general system of variational inclusions and a common fixed point problem of countable nonexpansive mappings and an asymptotically nonexpansive mapping, respectively. In this paper, via a new inertial subgradient ex-tragradient rule we introduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP as constraints. Some strong convergence theorems for the proposed algorithms are established under some mild assumptions. Our results improve and extend some corresponding results in the earlier and very recent literature.","PeriodicalId":51051,"journal":{"name":"Fixed Point Theory","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On inertial subgradient extragradient rule for monotone bilevel equilibrium problems\",\"authors\":\"L. Ceng, A. Petruşel, X. Qin, J. Yao\",\"doi\":\"10.24193/fpt-ro.2023.1.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In a real Hilbert space, let the GSVI and CFPP represent a general system of variational inclusions and a common fixed point problem of countable nonexpansive mappings and an asymptotically nonexpansive mapping, respectively. In this paper, via a new inertial subgradient ex-tragradient rule we introduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP as constraints. Some strong convergence theorems for the proposed algorithms are established under some mild assumptions. Our results improve and extend some corresponding results in the earlier and very recent literature.\",\"PeriodicalId\":51051,\"journal\":{\"name\":\"Fixed Point Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fixed Point Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24193/fpt-ro.2023.1.05\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed Point Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24193/fpt-ro.2023.1.05","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

. 在实数Hilbert空间中,设GSVI和CFPP分别表示一个变分包含的一般系统、一个可数非扩张映射的公共不动点问题和一个渐近非扩张映射。本文通过一种新的惯性次梯度除斜规则,介绍并分析了以GSVI和CFPP为约束的求解单调双能级平衡问题的两种迭代算法。在一些温和的假设条件下,建立了算法的强收敛定理。我们的结果改进和扩展了早期和最近文献中的一些相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On inertial subgradient extragradient rule for monotone bilevel equilibrium problems
. In a real Hilbert space, let the GSVI and CFPP represent a general system of variational inclusions and a common fixed point problem of countable nonexpansive mappings and an asymptotically nonexpansive mapping, respectively. In this paper, via a new inertial subgradient ex-tragradient rule we introduce and analyze two iterative algorithms for solving the monotone bilevel equilibrium problem (MBEP) with the GSVI and CFPP as constraints. Some strong convergence theorems for the proposed algorithms are established under some mild assumptions. Our results improve and extend some corresponding results in the earlier and very recent literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fixed Point Theory
Fixed Point Theory 数学-数学
CiteScore
2.30
自引率
9.10%
发文量
26
审稿时长
6-12 weeks
期刊介绍: Fixed Point Theory publishes relevant research and expository papers devoted to the all topics of fixed point theory and applications in all structured set (algebraic, metric, topological (general and algebraic), geometric (synthetic, analytic, metric, differential, topological), ...) and in category theory. Applications to ordinary differential equations, partial differential equations, functional equations, integral equations, mathematical physics, mathematical chemistry, mathematical biology, mathematical economics, mathematical finances, informatics, ..., are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信