摩洛哥-加勒布地区马铃薯作物的机器学习预测施肥模型

Q2 Computer Science
Said Tkatek, Samar Amassmir, Amine Belmzoukia, J. Abouchabaka
{"title":"摩洛哥-加勒布地区马铃薯作物的机器学习预测施肥模型","authors":"Said Tkatek, Samar Amassmir, Amine Belmzoukia, J. Abouchabaka","doi":"10.11591/ijece.v13i5.pp5942-5950","DOIUrl":null,"url":null,"abstract":"Given the influence of several factors, including weather, soils, land management, genotypes, and the severity of pests and diseases, prescribing adequate nutrient levels is difficult. A potato’s performance can be predicted using machine learning techniques in cases when there is enough data. This study aimed to develop a highly precise model for determining the optimal levels of nitrogen, phosphorus, and potassium required to achieve both high-quality and high-yield potato crops, taking into account the impact of various environmental factors such as weather, soil type, and land management practices. We used 900 field experiments from Kaggle as part of a data set. We developed, evaluated, and compared prediction models of k-nearest neighbor (KNN), linear support vector machine (SVM), naive Bayes (NB) classifier, decision tree (DT) regressor, random forest (RF) regressor, and eXtreme gradient boosting (XGBoost). We used measures such as mean average error (MAE), mean squared error (MSE), R-Squared (RS), and R2Root mean squared error (RMSE) to describe the model’s mistakes and prediction capacity. It turned out that the XGBoost model has the greatest R2, MSE and MAE values. Overall, the XGBoost model outperforms the other machine learning models. In the end, we suggested a hardware implementation to help farmers in the field.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive fertilization models for potato crops using machine learning techniques in Moroccan Gharb region\",\"authors\":\"Said Tkatek, Samar Amassmir, Amine Belmzoukia, J. Abouchabaka\",\"doi\":\"10.11591/ijece.v13i5.pp5942-5950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the influence of several factors, including weather, soils, land management, genotypes, and the severity of pests and diseases, prescribing adequate nutrient levels is difficult. A potato’s performance can be predicted using machine learning techniques in cases when there is enough data. This study aimed to develop a highly precise model for determining the optimal levels of nitrogen, phosphorus, and potassium required to achieve both high-quality and high-yield potato crops, taking into account the impact of various environmental factors such as weather, soil type, and land management practices. We used 900 field experiments from Kaggle as part of a data set. We developed, evaluated, and compared prediction models of k-nearest neighbor (KNN), linear support vector machine (SVM), naive Bayes (NB) classifier, decision tree (DT) regressor, random forest (RF) regressor, and eXtreme gradient boosting (XGBoost). We used measures such as mean average error (MAE), mean squared error (MSE), R-Squared (RS), and R2Root mean squared error (RMSE) to describe the model’s mistakes and prediction capacity. It turned out that the XGBoost model has the greatest R2, MSE and MAE values. Overall, the XGBoost model outperforms the other machine learning models. In the end, we suggested a hardware implementation to help farmers in the field.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5942-5950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5942-5950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

考虑到几个因素的影响,包括天气、土壤、土地管理、基因型以及病虫害的严重程度,很难规定足够的营养水平。在有足够数据的情况下,可以使用机器学习技术预测土豆的性能。这项研究旨在开发一个高度精确的模型,以确定实现优质高产马铃薯作物所需的氮、磷和钾的最佳水平,同时考虑天气、土壤类型和土地管理实践等各种环境因素的影响。我们使用了Kaggle的900个现场实验作为数据集的一部分。我们开发、评估并比较了k近邻(KNN)、线性支持向量机(SVM)、朴素贝叶斯(NB)分类器、决策树(DT)回归器、随机森林(RF)回归器和极限梯度提升(XGBoost)的预测模型。我们使用了平均误差(MAE)、均方误差(MSE)、R平方(RS)和R2均方误差根(RMSE)等指标来描述模型的误差和预测能力。结果表明,XGBoost模型具有最大的R2、MSE和MAE值。总体而言,XGBoost模型的性能优于其他机器学习模型。最后,我们提出了一个硬件实施方案来帮助农民在田里干活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive fertilization models for potato crops using machine learning techniques in Moroccan Gharb region
Given the influence of several factors, including weather, soils, land management, genotypes, and the severity of pests and diseases, prescribing adequate nutrient levels is difficult. A potato’s performance can be predicted using machine learning techniques in cases when there is enough data. This study aimed to develop a highly precise model for determining the optimal levels of nitrogen, phosphorus, and potassium required to achieve both high-quality and high-yield potato crops, taking into account the impact of various environmental factors such as weather, soil type, and land management practices. We used 900 field experiments from Kaggle as part of a data set. We developed, evaluated, and compared prediction models of k-nearest neighbor (KNN), linear support vector machine (SVM), naive Bayes (NB) classifier, decision tree (DT) regressor, random forest (RF) regressor, and eXtreme gradient boosting (XGBoost). We used measures such as mean average error (MAE), mean squared error (MSE), R-Squared (RS), and R2Root mean squared error (RMSE) to describe the model’s mistakes and prediction capacity. It turned out that the XGBoost model has the greatest R2, MSE and MAE values. Overall, the XGBoost model outperforms the other machine learning models. In the end, we suggested a hardware implementation to help farmers in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信