{"title":"循环衍生,物种实现和潜力","authors":"Daniel López-Aguayo","doi":"10.15446/recolma.v53nsupl.84083","DOIUrl":null,"url":null,"abstract":"In this paper we give an overview of a generalization, introduced by R. Bautista and the author, of the theory of mutation of quivers with potential developed in 2007 by Derksen-Weyman-Zelevinsky. This new construction allows us to consider finite dimensional semisimple F-algebras, where F is any field. We give a brief account of the results concerning this generalization and its main consequences.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15446/recolma.v53nsupl.84083","citationCount":"1","resultStr":"{\"title\":\"Cyclic derivations, species realizations and potentials\",\"authors\":\"Daniel López-Aguayo\",\"doi\":\"10.15446/recolma.v53nsupl.84083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give an overview of a generalization, introduced by R. Bautista and the author, of the theory of mutation of quivers with potential developed in 2007 by Derksen-Weyman-Zelevinsky. This new construction allows us to consider finite dimensional semisimple F-algebras, where F is any field. We give a brief account of the results concerning this generalization and its main consequences.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15446/recolma.v53nsupl.84083\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v53nsupl.84083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v53nsupl.84083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Cyclic derivations, species realizations and potentials
In this paper we give an overview of a generalization, introduced by R. Bautista and the author, of the theory of mutation of quivers with potential developed in 2007 by Derksen-Weyman-Zelevinsky. This new construction allows us to consider finite dimensional semisimple F-algebras, where F is any field. We give a brief account of the results concerning this generalization and its main consequences.