变系数时空分数伊东系统:显式解、守恒定律和数值近似

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Baljinder Kour, M. Inc., Ashish Arora
{"title":"变系数时空分数伊东系统:显式解、守恒定律和数值近似","authors":"Baljinder Kour, M. Inc., Ashish Arora","doi":"10.1108/mmms-05-2022-0097","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this paper is to present the residual power series method for solving the space time fractional variable coefficients Ito system.Design/methodology/approachA weighted algorithm based on the residual power series method is used numerical solution of the space time fractional Ito system variable coefficients. The authors show that this technique yields the analytical solution of the desired problem in the form of a rapidly convergent series with easily computable components.FindingsThe authors illustrate that the proposed method produces satisfactory results with respect to the other semi analytical methods. The reliability of the method and the reduction in the size of computational domain give this method a wider applicability.Originality/valueThis research presents, for the first time, a new modification of the proposed technique for aforementioned problems and some interesting results are obtained.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space time fractional Ito system with variable coefficients: explicit solution, conservation laws and numerical approximation\",\"authors\":\"Baljinder Kour, M. Inc., Ashish Arora\",\"doi\":\"10.1108/mmms-05-2022-0097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this paper is to present the residual power series method for solving the space time fractional variable coefficients Ito system.Design/methodology/approachA weighted algorithm based on the residual power series method is used numerical solution of the space time fractional Ito system variable coefficients. The authors show that this technique yields the analytical solution of the desired problem in the form of a rapidly convergent series with easily computable components.FindingsThe authors illustrate that the proposed method produces satisfactory results with respect to the other semi analytical methods. The reliability of the method and the reduction in the size of computational domain give this method a wider applicability.Originality/valueThis research presents, for the first time, a new modification of the proposed technique for aforementioned problems and some interesting results are obtained.\",\"PeriodicalId\":46760,\"journal\":{\"name\":\"Multidiscipline Modeling in Materials and Structures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multidiscipline Modeling in Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/mmms-05-2022-0097\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/mmms-05-2022-0097","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目的提出求解时空分数阶变系数伊藤方程组的剩余幂级数法。设计方法采用基于残差幂级数法的加权算法对时空分数型伊藤系统变系数进行数值求解。作者表明,这种技术产生了期望问题的解析解,其形式是一个快速收敛的级数,具有易于计算的分量。结果表明,相对于其他半解析方法,本文提出的方法产生了令人满意的结果。该方法的可靠性和计算域的缩小使该方法具有更广泛的适用性。原创性/价值本研究首次对上述问题提出了一种新的改进方法,并获得了一些有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space time fractional Ito system with variable coefficients: explicit solution, conservation laws and numerical approximation
PurposeThe purpose of this paper is to present the residual power series method for solving the space time fractional variable coefficients Ito system.Design/methodology/approachA weighted algorithm based on the residual power series method is used numerical solution of the space time fractional Ito system variable coefficients. The authors show that this technique yields the analytical solution of the desired problem in the form of a rapidly convergent series with easily computable components.FindingsThe authors illustrate that the proposed method produces satisfactory results with respect to the other semi analytical methods. The reliability of the method and the reduction in the size of computational domain give this method a wider applicability.Originality/valueThis research presents, for the first time, a new modification of the proposed technique for aforementioned problems and some interesting results are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
60
期刊介绍: Multidiscipline Modeling in Materials and Structures is published by Emerald Group Publishing Limited from 2010
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信