非Fredholm条件下一维分步量子行走的Witten指数

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Yasumichi Matsuzawa, A. Suzuki, Yohei Tanaka, Noriaki Teranishi, K. Wada
{"title":"非Fredholm条件下一维分步量子行走的Witten指数","authors":"Yasumichi Matsuzawa, A. Suzuki, Yohei Tanaka, Noriaki Teranishi, K. Wada","doi":"10.1142/S0129055X23500101","DOIUrl":null,"url":null,"abstract":"It is recently shown that a split-step quantum walk possesses a chiral symmetry, and that a certain well-defined index can be naturally assigned to it. The index is a well-defined Fredholm index if and only if the associated unitary time-evolution operator has spectral gaps at both $+1$ and $-1.$ In this paper we extend the existing index formula for the Fredholm case to encompass the non-Fredholm case (i.e., gapless case). We make use of a natural extension of the Fredholm index to the non-Fredholm case, known as the Witten index. The aim of this paper is to fully classify the Witten index of the split-step quantum walk by employing the spectral shift function for a rank one perturbation of a fourth order difference operator. It is also shown in this paper that the Witten index can take half-integer values in the non-Fredholm case.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Witten index for one-dimensional split-step quantum walks under the non-Fredholm condition\",\"authors\":\"Yasumichi Matsuzawa, A. Suzuki, Yohei Tanaka, Noriaki Teranishi, K. Wada\",\"doi\":\"10.1142/S0129055X23500101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is recently shown that a split-step quantum walk possesses a chiral symmetry, and that a certain well-defined index can be naturally assigned to it. The index is a well-defined Fredholm index if and only if the associated unitary time-evolution operator has spectral gaps at both $+1$ and $-1.$ In this paper we extend the existing index formula for the Fredholm case to encompass the non-Fredholm case (i.e., gapless case). We make use of a natural extension of the Fredholm index to the non-Fredholm case, known as the Witten index. The aim of this paper is to fully classify the Witten index of the split-step quantum walk by employing the spectral shift function for a rank one perturbation of a fourth order difference operator. It is also shown in this paper that the Witten index can take half-integer values in the non-Fredholm case.\",\"PeriodicalId\":54483,\"journal\":{\"name\":\"Reviews in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129055X23500101\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0129055X23500101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

最近的研究表明,分步量子行走具有手性对称性,并且可以自然地赋予它一定的定义明确的指数。该指数是一个定义明确的Fredholm指数,当且仅当相关的酉时间演化算子在$+1$和$-1.$处都具有谱间隙。本文将Fredholm情况的现有指数公式扩展到包括非Fredholm情形(即无间隙情况)。我们利用Fredholm指数对非Fredholm情况的自然扩展,称为Witten指数。本文的目的是通过对四阶差分算子的一阶扰动使用谱移函数,对分步量子行走的Witten指数进行完全分类。本文还证明了Witten指数在非Fredholm情况下可以取半整数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Witten index for one-dimensional split-step quantum walks under the non-Fredholm condition
It is recently shown that a split-step quantum walk possesses a chiral symmetry, and that a certain well-defined index can be naturally assigned to it. The index is a well-defined Fredholm index if and only if the associated unitary time-evolution operator has spectral gaps at both $+1$ and $-1.$ In this paper we extend the existing index formula for the Fredholm case to encompass the non-Fredholm case (i.e., gapless case). We make use of a natural extension of the Fredholm index to the non-Fredholm case, known as the Witten index. The aim of this paper is to fully classify the Witten index of the split-step quantum walk by employing the spectral shift function for a rank one perturbation of a fourth order difference operator. It is also shown in this paper that the Witten index can take half-integer values in the non-Fredholm case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信