热力学Kuramoto模型的一致稳定性和时间上的一致平均场极限

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Seung‐Yeal Ha, Myeongju Kang, Hansol Park, T. Ruggeri, Woojoo Shim
{"title":"热力学Kuramoto模型的一致稳定性和时间上的一致平均场极限","authors":"Seung‐Yeal Ha, Myeongju Kang, Hansol Park, T. Ruggeri, Woojoo Shim","doi":"10.1090/QAM/1588","DOIUrl":null,"url":null,"abstract":"We consider the thermodynamic Kuramoto model proposed in \\cite{H-P-R-S}. For each oscillator in thermodynamic Kuramoto model, there is a coupling effect between the phase and the temperature field. For such a model, we study a uniform stability and uniform-in-time mean-field limit to the corresponding kinetic equation. For this, we first derive a uniform \n\n \n \n ℓ\n p\n \n \\ell ^p\n \n\n-stability of the thermodynamic Kuramoto model with respect to initial data by directly estimating the temporal evolution of \n\n \n \n ℓ\n p\n \n \\ell ^p\n \n\n-distance between two admissible solutions to the particle thermodynamic Kuramoto model. In a large-oscillator limit, the Vlasov type mean-field equation can be rigorously derived using the BBGKY hierarchy, uniform stability estimate, and particle-in-cell method. We construct unique global-in-time measure-valued solutions to the derived kinetic equation and also derive a uniform-in-time stability estimate and emergent estimates.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform stability and uniform-in-time mean-field limit of the thermodynamic Kuramoto model\",\"authors\":\"Seung‐Yeal Ha, Myeongju Kang, Hansol Park, T. Ruggeri, Woojoo Shim\",\"doi\":\"10.1090/QAM/1588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the thermodynamic Kuramoto model proposed in \\\\cite{H-P-R-S}. For each oscillator in thermodynamic Kuramoto model, there is a coupling effect between the phase and the temperature field. For such a model, we study a uniform stability and uniform-in-time mean-field limit to the corresponding kinetic equation. For this, we first derive a uniform \\n\\n \\n \\n ℓ\\n p\\n \\n \\\\ell ^p\\n \\n\\n-stability of the thermodynamic Kuramoto model with respect to initial data by directly estimating the temporal evolution of \\n\\n \\n \\n ℓ\\n p\\n \\n \\\\ell ^p\\n \\n\\n-distance between two admissible solutions to the particle thermodynamic Kuramoto model. In a large-oscillator limit, the Vlasov type mean-field equation can be rigorously derived using the BBGKY hierarchy, uniform stability estimate, and particle-in-cell method. We construct unique global-in-time measure-valued solutions to the derived kinetic equation and also derive a uniform-in-time stability estimate and emergent estimates.\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/QAM/1588\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/QAM/1588","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在{H-P-R-S}中提出的热力学Kuramoto模型。对于热力学Kuramoto模型中的每个振荡器,相位和温度场之间都存在耦合效应。对于这样一个模型,我们研究了相应动力学方程的一致稳定性和一致时间平均场极限。为此,我们首先导出ℓ p\ell^p-热力学Kuramoto模型相对于初始数据的稳定性,通过直接估计ℓ p\ell^p-粒子热力学Kuramoto模型的两个容许解之间的距离。在大振子极限下,Vlasov型平均场方程可以使用BBGKY层次、一致稳定性估计和单元内粒子方法严格推导。我们构造了导出的动力学方程的唯一全局时间测度值解,并导出了一致的时间稳定性估计和涌现估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform stability and uniform-in-time mean-field limit of the thermodynamic Kuramoto model
We consider the thermodynamic Kuramoto model proposed in \cite{H-P-R-S}. For each oscillator in thermodynamic Kuramoto model, there is a coupling effect between the phase and the temperature field. For such a model, we study a uniform stability and uniform-in-time mean-field limit to the corresponding kinetic equation. For this, we first derive a uniform ℓ p \ell ^p -stability of the thermodynamic Kuramoto model with respect to initial data by directly estimating the temporal evolution of ℓ p \ell ^p -distance between two admissible solutions to the particle thermodynamic Kuramoto model. In a large-oscillator limit, the Vlasov type mean-field equation can be rigorously derived using the BBGKY hierarchy, uniform stability estimate, and particle-in-cell method. We construct unique global-in-time measure-valued solutions to the derived kinetic equation and also derive a uniform-in-time stability estimate and emergent estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信