具有一般指数非线性的非齐次椭圆型方程解存在性的阈值

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kazuhiro Ishige, S. Okabe, Tokushi Sato
{"title":"具有一般指数非线性的非齐次椭圆型方程解存在性的阈值","authors":"Kazuhiro Ishige, S. Okabe, Tokushi Sato","doi":"10.1515/anona-2021-0220","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ  in  RN, u>0  in  RN, u(x)→0  as  |x|→∞, - \\Delta u + u = F(u) + \\kappa \\mu \\quad {\\kern 1pt} {\\rm in}{\\kern 1pt} \\quad {{\\bf R}^N},\\quad u > 0\\quad {\\kern 1pt} {\\rm in}{\\kern 1pt} \\quad {{\\bf R}^N},\\quad u(x) \\to 0\\quad {\\kern 1pt} {\\rm as}{\\kern 1pt} \\quad |x| \\to \\infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN)\\{0} \\mu \\in L_{\\rm{c}}^1({{\\bf R}^N})\\backslash \\{ 0\\} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity\",\"authors\":\"Kazuhiro Ishige, S. Okabe, Tokushi Sato\",\"doi\":\"10.1515/anona-2021-0220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ  in  RN, u>0  in  RN, u(x)→0  as  |x|→∞, - \\\\Delta u + u = F(u) + \\\\kappa \\\\mu \\\\quad {\\\\kern 1pt} {\\\\rm in}{\\\\kern 1pt} \\\\quad {{\\\\bf R}^N},\\\\quad u > 0\\\\quad {\\\\kern 1pt} {\\\\rm in}{\\\\kern 1pt} \\\\quad {{\\\\bf R}^N},\\\\quad u(x) \\\\to 0\\\\quad {\\\\kern 1pt} {\\\\rm as}{\\\\kern 1pt} \\\\quad |x| \\\\to \\\\infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN)\\\\{0} \\\\mu \\\\in L_{\\\\rm{c}}^1({{\\\\bf R}^N})\\\\backslash \\\\{ 0\\\\} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2021-0220\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0220","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文研究了一个非齐次非线性椭圆型问题(P)-Δu+u=F(u)+κμ解的存在性和不存在性  在里面  RN, u> 0  在里面  RN, u(x)→0  像  |x|→∞, - \Δu+u=F(u)+\kappa\mu\quad{\kern 1pt}→ ∞. 这里N≥2,κ>0,并且L_{\rm{c}}^1({\bf R}^N})\反斜杠\{0}中的μ∈Lc1(RN)\{0}\mu是非负的。然后,在μ上的一个合适的可积条件下,存在一个阈值参数κ*>0,使得问题(P)在0<κ<κ*时具有解,而在κ>κ*时不具有无解。此外,在2≤N≤9的情况下,如果κ=κ*,则问题(P)具有唯一的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity
Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ  in  RN, u>0  in  RN, u(x)→0  as  |x|→∞, - \Delta u + u = F(u) + \kappa \mu \quad {\kern 1pt} {\rm in}{\kern 1pt} \quad {{\bf R}^N},\quad u > 0\quad {\kern 1pt} {\rm in}{\kern 1pt} \quad {{\bf R}^N},\quad u(x) \to 0\quad {\kern 1pt} {\rm as}{\kern 1pt} \quad |x| \to \infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN)\{0} \mu \in L_{\rm{c}}^1({{\bf R}^N})\backslash \{ 0\} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信