{"title":"具有一般指数非线性的非齐次椭圆型方程解存在性的阈值","authors":"Kazuhiro Ishige, S. Okabe, Tokushi Sato","doi":"10.1515/anona-2021-0220","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ in RN, u>0 in RN, u(x)→0 as |x|→∞, - \\Delta u + u = F(u) + \\kappa \\mu \\quad {\\kern 1pt} {\\rm in}{\\kern 1pt} \\quad {{\\bf R}^N},\\quad u > 0\\quad {\\kern 1pt} {\\rm in}{\\kern 1pt} \\quad {{\\bf R}^N},\\quad u(x) \\to 0\\quad {\\kern 1pt} {\\rm as}{\\kern 1pt} \\quad |x| \\to \\infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN)\\{0} \\mu \\in L_{\\rm{c}}^1({{\\bf R}^N})\\backslash \\{ 0\\} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity\",\"authors\":\"Kazuhiro Ishige, S. Okabe, Tokushi Sato\",\"doi\":\"10.1515/anona-2021-0220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ in RN, u>0 in RN, u(x)→0 as |x|→∞, - \\\\Delta u + u = F(u) + \\\\kappa \\\\mu \\\\quad {\\\\kern 1pt} {\\\\rm in}{\\\\kern 1pt} \\\\quad {{\\\\bf R}^N},\\\\quad u > 0\\\\quad {\\\\kern 1pt} {\\\\rm in}{\\\\kern 1pt} \\\\quad {{\\\\bf R}^N},\\\\quad u(x) \\\\to 0\\\\quad {\\\\kern 1pt} {\\\\rm as}{\\\\kern 1pt} \\\\quad |x| \\\\to \\\\infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN)\\\\{0} \\\\mu \\\\in L_{\\\\rm{c}}^1({{\\\\bf R}^N})\\\\backslash \\\\{ 0\\\\} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2021-0220\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0220","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity
Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ in RN, u>0 in RN, u(x)→0 as |x|→∞, - \Delta u + u = F(u) + \kappa \mu \quad {\kern 1pt} {\rm in}{\kern 1pt} \quad {{\bf R}^N},\quad u > 0\quad {\kern 1pt} {\rm in}{\kern 1pt} \quad {{\bf R}^N},\quad u(x) \to 0\quad {\kern 1pt} {\rm as}{\kern 1pt} \quad |x| \to \infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN)\{0} \mu \in L_{\rm{c}}^1({{\bf R}^N})\backslash \{ 0\} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.