幂零子群的族及相关的陪集集

IF 0.5 4区 数学
Simon Gritschacher, Bernardo Villarreal
{"title":"幂零子群的族及相关的陪集集","authors":"Simon Gritschacher,&nbsp;Bernardo Villarreal","doi":"10.1007/s40062-022-00315-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study some properties of the coset poset associated with the family of subgroups of class <span>\\(\\le 2\\)</span> of a nilpotent group of class <span>\\(\\le 3\\)</span>. We prove that under certain assumptions on the group the coset poset is simply-connected if and only if the group is 2-Engel, and 2-connected if and only if the group is nilpotent of class 2 or less. We determine the homotopy type of the coset poset for the group of <span>\\(4\\times 4\\)</span> upper unitriangular matrices over <span>\\(\\mathbb {F}_p\\)</span>, and for the Burnside groups of exponent 3.</p></div>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"17 4","pages":"493 - 509"},"PeriodicalIF":0.5000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On families of nilpotent subgroups and associated coset posets\",\"authors\":\"Simon Gritschacher,&nbsp;Bernardo Villarreal\",\"doi\":\"10.1007/s40062-022-00315-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study some properties of the coset poset associated with the family of subgroups of class <span>\\\\(\\\\le 2\\\\)</span> of a nilpotent group of class <span>\\\\(\\\\le 3\\\\)</span>. We prove that under certain assumptions on the group the coset poset is simply-connected if and only if the group is 2-Engel, and 2-connected if and only if the group is nilpotent of class 2 or less. We determine the homotopy type of the coset poset for the group of <span>\\\\(4\\\\times 4\\\\)</span> upper unitriangular matrices over <span>\\\\(\\\\mathbb {F}_p\\\\)</span>, and for the Burnside groups of exponent 3.</p></div>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"17 4\",\"pages\":\"493 - 509\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-022-00315-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00315-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类幂零群\(\le 3\)的类\(\le 2\)的子群族的协集偏序集的一些性质。证明了在群的某些假设下,当且仅当群是2- engel,当且仅当群是2类或更小的幂零时,群的余集偏序集是单连通的;我们确定了\(\mathbb {F}_p\)上的\(4\times 4\)上单角矩阵群和指数为3的Burnside群的余集偏序的同伦类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On families of nilpotent subgroups and associated coset posets

We study some properties of the coset poset associated with the family of subgroups of class \(\le 2\) of a nilpotent group of class \(\le 3\). We prove that under certain assumptions on the group the coset poset is simply-connected if and only if the group is 2-Engel, and 2-connected if and only if the group is nilpotent of class 2 or less. We determine the homotopy type of the coset poset for the group of \(4\times 4\) upper unitriangular matrices over \(\mathbb {F}_p\), and for the Burnside groups of exponent 3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信