论引力与纠缠的动力学关系

IF 1.2 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Pradosh Keshav MV
{"title":"论引力与纠缠的动力学关系","authors":"Pradosh Keshav MV","doi":"10.1134/S0202289321030087","DOIUrl":null,"url":null,"abstract":"<p>Recent developments on Bell’s experiments demonstrate that entanglement could indeed eliminate the gap between classical and quantum physics. At the same time, it is difficult for a classical theory to include a particular feature like entanglement without compromising the theory’s smooth working on a four-dimensional scale geometry. A unified theory should reconsider this difficulty. On the other hand, pregeometry holds the assumption of a noncommutative space where the Requardt-Roy model seems to be a promising one. From the ordinary five-dimensional approach, first initiated by Kaluza and Klein, a toy model is proposed to show an insignificant description of gravity at Planck’s scale physics. It is found that the classical nature of quantum correlations is fine-tuned within the geometry of space-time in four dimensions. Such a nature can be better understood by studying the pregeometric effects of gravity in five dimensions. A combined description is found, sufficient to explain the fundamental difficulties of a discrete space-time manifold in both theories.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"27 3","pages":"187 - 201"},"PeriodicalIF":1.2000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Dynamics between Gravity and Entanglement\",\"authors\":\"Pradosh Keshav MV\",\"doi\":\"10.1134/S0202289321030087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent developments on Bell’s experiments demonstrate that entanglement could indeed eliminate the gap between classical and quantum physics. At the same time, it is difficult for a classical theory to include a particular feature like entanglement without compromising the theory’s smooth working on a four-dimensional scale geometry. A unified theory should reconsider this difficulty. On the other hand, pregeometry holds the assumption of a noncommutative space where the Requardt-Roy model seems to be a promising one. From the ordinary five-dimensional approach, first initiated by Kaluza and Klein, a toy model is proposed to show an insignificant description of gravity at Planck’s scale physics. It is found that the classical nature of quantum correlations is fine-tuned within the geometry of space-time in four dimensions. Such a nature can be better understood by studying the pregeometric effects of gravity in five dimensions. A combined description is found, sufficient to explain the fundamental difficulties of a discrete space-time manifold in both theories.</p>\",\"PeriodicalId\":583,\"journal\":{\"name\":\"Gravitation and Cosmology\",\"volume\":\"27 3\",\"pages\":\"187 - 201\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gravitation and Cosmology\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0202289321030087\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289321030087","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

贝尔实验的最新进展表明,纠缠确实可以消除经典物理学和量子物理学之间的差距。与此同时,经典理论很难在不影响理论在四维尺度几何上的平滑工作的情况下包含像纠缠这样的特定特征。统一理论应该重新考虑这个困难。另一方面,预几何持有一个非交换空间的假设,其中Requardt-Roy模型似乎是一个有前途的模型。首先由Kaluza和Klein提出的普通五维方法,提出了一个玩具模型来显示普朗克尺度物理中引力的无关紧要的描述。研究发现,量子相关的经典性质在四维时空几何中得到了微调。通过在五个维度上研究重力的前几何效应,可以更好地理解这种性质。找到了一个组合的描述,足以解释两个理论中离散时空流形的基本困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Dynamics between Gravity and Entanglement

On the Dynamics between Gravity and Entanglement

Recent developments on Bell’s experiments demonstrate that entanglement could indeed eliminate the gap between classical and quantum physics. At the same time, it is difficult for a classical theory to include a particular feature like entanglement without compromising the theory’s smooth working on a four-dimensional scale geometry. A unified theory should reconsider this difficulty. On the other hand, pregeometry holds the assumption of a noncommutative space where the Requardt-Roy model seems to be a promising one. From the ordinary five-dimensional approach, first initiated by Kaluza and Klein, a toy model is proposed to show an insignificant description of gravity at Planck’s scale physics. It is found that the classical nature of quantum correlations is fine-tuned within the geometry of space-time in four dimensions. Such a nature can be better understood by studying the pregeometric effects of gravity in five dimensions. A combined description is found, sufficient to explain the fundamental difficulties of a discrete space-time manifold in both theories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gravitation and Cosmology
Gravitation and Cosmology ASTRONOMY & ASTROPHYSICS-
CiteScore
1.70
自引率
22.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信