{"title":"具有临界Sobolev-Hardy指数的非局部奇异偏微分方程的多重性结果","authors":"A. Daoues, A. Hammami, K. Saoudi","doi":"10.58997/ejde.2023.10","DOIUrl":null,"url":null,"abstract":" In this article we study a nonlocal equation involving singular and critical Hardy-Sobolev non-linearities, \\[\\displaylines{(-\\Delta_p)^su-\\mu \\frac{|u|^{p-2}u}{|x|^{sp}}=\\lambda u^{-\\alpha}+\\frac{|u|^{p_s^*(t)-2}u}{|x|^t}, \\quad\\hbox{in }\\Omega, \\\\ u>0,\\quad\\text{in }\\Omega,\\\\ \\quad u=0, \\quad\\text{in } \\mathbb{R}^N \\setminus\\Omega }\\] where \\(\\Omega \\subset \\mathbb{R}^N\\) is a bounded domain with Lipschitz boundary and\\( (-\\Delta_p)^s\\) is the fractional p-Laplacian operator.We combine some variational techniques with a perturbation method to show the existenceof multiple solutions.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity results of nonlocal singular PDEs with critical Sobolev-Hardy exponent\",\"authors\":\"A. Daoues, A. Hammami, K. Saoudi\",\"doi\":\"10.58997/ejde.2023.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" In this article we study a nonlocal equation involving singular and critical Hardy-Sobolev non-linearities, \\\\[\\\\displaylines{(-\\\\Delta_p)^su-\\\\mu \\\\frac{|u|^{p-2}u}{|x|^{sp}}=\\\\lambda u^{-\\\\alpha}+\\\\frac{|u|^{p_s^*(t)-2}u}{|x|^t}, \\\\quad\\\\hbox{in }\\\\Omega, \\\\\\\\ u>0,\\\\quad\\\\text{in }\\\\Omega,\\\\\\\\ \\\\quad u=0, \\\\quad\\\\text{in } \\\\mathbb{R}^N \\\\setminus\\\\Omega }\\\\] where \\\\(\\\\Omega \\\\subset \\\\mathbb{R}^N\\\\) is a bounded domain with Lipschitz boundary and\\\\( (-\\\\Delta_p)^s\\\\) is the fractional p-Laplacian operator.We combine some variational techniques with a perturbation method to show the existenceof multiple solutions.\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.10\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Multiplicity results of nonlocal singular PDEs with critical Sobolev-Hardy exponent
In this article we study a nonlocal equation involving singular and critical Hardy-Sobolev non-linearities, \[\displaylines{(-\Delta_p)^su-\mu \frac{|u|^{p-2}u}{|x|^{sp}}=\lambda u^{-\alpha}+\frac{|u|^{p_s^*(t)-2}u}{|x|^t}, \quad\hbox{in }\Omega, \\ u>0,\quad\text{in }\Omega,\\ \quad u=0, \quad\text{in } \mathbb{R}^N \setminus\Omega }\] where \(\Omega \subset \mathbb{R}^N\) is a bounded domain with Lipschitz boundary and\( (-\Delta_p)^s\) is the fractional p-Laplacian operator.We combine some variational techniques with a perturbation method to show the existenceof multiple solutions.
期刊介绍:
All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.