识别异步:过期工作

Victor Perez, Jamille Pasco
{"title":"识别异步:过期工作","authors":"Victor Perez, Jamille Pasco","doi":"10.53097/jmv.10086","DOIUrl":null,"url":null,"abstract":"Mechanical ventilation is used to improve gas exchange and unload the respiratory muscles allowing for their rest and recovery, which require good synchronization between the patient and the ventilator. Spontaneous respiratory effort is generally preferred because it reduces atelectasis, improves oxygenation, and may prevent disuse diaphragm atrophy. Nevertheless, vigorous spontaneous effort can cause both lung injury and diaphragm injury (myotrauma). These injuries lead to prolonged ventilation, difficult weaning, and increased morbidity and mortality. Normal expiration is passive due to the recoil of the lungs and chest wall. In mechanical ventilation, during expiration the ventilator controls the pressure (ie, the target value is PEEP), therefore, we must look at the flow and volume waveforms to see the physiology and patient-ventilator interactions. In expiration the patient-ventilation interaction is not characterized by timing but by work. Expiratory effort (ie, negative Pmus) will deform the flow waveform in a negative direction (away from baseline). Keywords: synchronization, spontaneous effort, lung injury, myotrauma, expiratory effort","PeriodicalId":73813,"journal":{"name":"Journal of mechanical ventilation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying asynchronies: Expiratory work\",\"authors\":\"Victor Perez, Jamille Pasco\",\"doi\":\"10.53097/jmv.10086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical ventilation is used to improve gas exchange and unload the respiratory muscles allowing for their rest and recovery, which require good synchronization between the patient and the ventilator. Spontaneous respiratory effort is generally preferred because it reduces atelectasis, improves oxygenation, and may prevent disuse diaphragm atrophy. Nevertheless, vigorous spontaneous effort can cause both lung injury and diaphragm injury (myotrauma). These injuries lead to prolonged ventilation, difficult weaning, and increased morbidity and mortality. Normal expiration is passive due to the recoil of the lungs and chest wall. In mechanical ventilation, during expiration the ventilator controls the pressure (ie, the target value is PEEP), therefore, we must look at the flow and volume waveforms to see the physiology and patient-ventilator interactions. In expiration the patient-ventilation interaction is not characterized by timing but by work. Expiratory effort (ie, negative Pmus) will deform the flow waveform in a negative direction (away from baseline). Keywords: synchronization, spontaneous effort, lung injury, myotrauma, expiratory effort\",\"PeriodicalId\":73813,\"journal\":{\"name\":\"Journal of mechanical ventilation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of mechanical ventilation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53097/jmv.10086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of mechanical ventilation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53097/jmv.10086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机械通气用于改善气体交换并卸载呼吸肌,以使其休息和恢复,这需要患者和呼吸机之间的良好同步。自然呼吸通常是首选,因为它可以减少肺不张,改善氧合,并可以防止废用性膈肌萎缩。尽管如此,剧烈的自发努力可能会导致肺损伤和膈肌损伤(肌肉创伤)。这些损伤导致通气时间延长,断奶困难,发病率和死亡率增加。正常呼气是被动的,因为肺部和胸壁会发生反冲。在机械通气中,在呼气期间,呼吸机控制压力(即,目标值为PEEP),因此,我们必须查看流量和体积波形,以了解生理学和患者与呼吸机的相互作用。在呼气中,患者通气的相互作用不是以时间为特征,而是以工作为特征。呼气力(即负Pmus)会使血流波形向负方向(远离基线)变形。关键词:同步性、自发用力、肺损伤、肌肉创伤、呼气用力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying asynchronies: Expiratory work
Mechanical ventilation is used to improve gas exchange and unload the respiratory muscles allowing for their rest and recovery, which require good synchronization between the patient and the ventilator. Spontaneous respiratory effort is generally preferred because it reduces atelectasis, improves oxygenation, and may prevent disuse diaphragm atrophy. Nevertheless, vigorous spontaneous effort can cause both lung injury and diaphragm injury (myotrauma). These injuries lead to prolonged ventilation, difficult weaning, and increased morbidity and mortality. Normal expiration is passive due to the recoil of the lungs and chest wall. In mechanical ventilation, during expiration the ventilator controls the pressure (ie, the target value is PEEP), therefore, we must look at the flow and volume waveforms to see the physiology and patient-ventilator interactions. In expiration the patient-ventilation interaction is not characterized by timing but by work. Expiratory effort (ie, negative Pmus) will deform the flow waveform in a negative direction (away from baseline). Keywords: synchronization, spontaneous effort, lung injury, myotrauma, expiratory effort
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信