{"title":"多维Schrödinger代数指数的正常有序解缠","authors":"L. Accardi, A. Boukas","doi":"10.31390/COSA.12.3.05","DOIUrl":null,"url":null,"abstract":"We derive a normally ordered disentanglement or splitting formula for exponentials of the infinite-dimensional Schrödinger Lie algebra generators. As an application we compute the vacuum characteristic function of a quantum random variable defined as a self-adjoint finite sum of Fock space operators, satisfying the multi-dimensional Schrödinger Lie algebra commutation relations.","PeriodicalId":53434,"journal":{"name":"Communications on Stochastic Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Normally Ordered Disentanglement of Multi-Dimensional Schrödinger Algebra Exponentials\",\"authors\":\"L. Accardi, A. Boukas\",\"doi\":\"10.31390/COSA.12.3.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a normally ordered disentanglement or splitting formula for exponentials of the infinite-dimensional Schrödinger Lie algebra generators. As an application we compute the vacuum characteristic function of a quantum random variable defined as a self-adjoint finite sum of Fock space operators, satisfying the multi-dimensional Schrödinger Lie algebra commutation relations.\",\"PeriodicalId\":53434,\"journal\":{\"name\":\"Communications on Stochastic Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/COSA.12.3.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/COSA.12.3.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Normally Ordered Disentanglement of Multi-Dimensional Schrödinger Algebra Exponentials
We derive a normally ordered disentanglement or splitting formula for exponentials of the infinite-dimensional Schrödinger Lie algebra generators. As an application we compute the vacuum characteristic function of a quantum random variable defined as a self-adjoint finite sum of Fock space operators, satisfying the multi-dimensional Schrödinger Lie algebra commutation relations.
期刊介绍:
The journal Communications on Stochastic Analysis (COSA) is published in four issues annually (March, June, September, December). It aims to present original research papers of high quality in stochastic analysis (both theory and applications) and emphasizes the global development of the scientific community. The journal welcomes articles of interdisciplinary nature. Expository articles of current interest will occasionally be published. COSAis indexed in Mathematical Reviews (MathSciNet), Zentralblatt für Mathematik, and SCOPUS