复曲面域的辛非凸性

IF 1.2 2区 数学 Q1 MATHEMATICS
Julien Dardennes, J. Gutt, Jun Zhang
{"title":"复曲面域的辛非凸性","authors":"Julien Dardennes, J. Gutt, Jun Zhang","doi":"10.1142/s0219199723500104","DOIUrl":null,"url":null,"abstract":"We investigate the convexity up to symplectomorphism (called symplectic convexity) of star-shaped toric domains in $\\mathbb R^4$. In particular, based on the criterion from Chaidez-Edtmair via Ruelle invariant and systolic ratio of the boundary of star-shaped toric domains, we provide elementary operations on domains that can kill the symplectic convexity. These operations only result in $C^0$-small perturbations in terms of domains' volume. Moreover, one of the operations is a systematic way to produce examples of dynamically convex but not symplectically convex toric domains. Finally, we are able to provide concrete bounds for the constants that appear in Chaidez-Edtmair's criterion.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Symplectic non-convexity of toric domains\",\"authors\":\"Julien Dardennes, J. Gutt, Jun Zhang\",\"doi\":\"10.1142/s0219199723500104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the convexity up to symplectomorphism (called symplectic convexity) of star-shaped toric domains in $\\\\mathbb R^4$. In particular, based on the criterion from Chaidez-Edtmair via Ruelle invariant and systolic ratio of the boundary of star-shaped toric domains, we provide elementary operations on domains that can kill the symplectic convexity. These operations only result in $C^0$-small perturbations in terms of domains' volume. Moreover, one of the operations is a systematic way to produce examples of dynamically convex but not symplectically convex toric domains. Finally, we are able to provide concrete bounds for the constants that appear in Chaidez-Edtmair's criterion.\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199723500104\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199723500104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了$\mathbb R^4$中星形复曲面域的凸性直至辛同胚性(称为辛凸性)。特别地,基于Chaidez-Edtmair通过Ruelle不变量和星形复曲面域边界收缩比的判据,我们提供了对域的初等运算,这些运算可以消除辛凸性。这些操作只会导致$C^0$——域体积方面的小扰动。此外,其中一种操作是系统地生成动态凸但非共凸复曲面域的例子。最后,我们能够为Chaidez-Edtmair准则中出现的常数提供具体的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic non-convexity of toric domains
We investigate the convexity up to symplectomorphism (called symplectic convexity) of star-shaped toric domains in $\mathbb R^4$. In particular, based on the criterion from Chaidez-Edtmair via Ruelle invariant and systolic ratio of the boundary of star-shaped toric domains, we provide elementary operations on domains that can kill the symplectic convexity. These operations only result in $C^0$-small perturbations in terms of domains' volume. Moreover, one of the operations is a systematic way to produce examples of dynamically convex but not symplectically convex toric domains. Finally, we are able to provide concrete bounds for the constants that appear in Chaidez-Edtmair's criterion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信