P. Fernando, L. Antonino, G. E. Garcia, Rogerio R. de Sousa Júnior, Antonio V. Neto, F. Y. Nakamoto, D. J. dos Santos
{"title":"改性硫酸盐木质素对环氧胶粘剂力学性能的影响:实验和理论方法","authors":"P. Fernando, L. Antonino, G. E. Garcia, Rogerio R. de Sousa Júnior, Antonio V. Neto, F. Y. Nakamoto, D. J. dos Santos","doi":"10.1080/00218464.2023.2194535","DOIUrl":null,"url":null,"abstract":"ABSTRACT Several lignin-based adhesives were developed during the last decades. More recently, lignin isolation methods were improved, leading to technical grade lignins with constant properties. This recent scenario created the required conditions for the industrial use of lignin in adhesive applications, at large scale, with reliable properties. In this work, technical grade kraft lignin was epoxidized and incorporated in industrial epoxy resin, resulting into a partly biobased epoxy resin. Notwithstanding, the mechanical properties of cured partly biobased epoxy were investigated using Arcan device, aiming to reproduce realistic load conditions for the adhesively bonded joints. At last, failure envelopes were obtained from Drucker–Prager and von Mises models, revealing the most reliable model to calculate the failure prediction. Results pointed out to the development of a partly biobased epoxy adhesive with slightly superior mechanical properties, in comparison with industrial epoxy adhesive. Indeed, an important contribution was provided for the lignin revalorization and the mechanical characterization and failure prediction of epoxy adhesive based on the modified lignin.","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the incorporation of modified kraft lignin on the mechanical properties of epoxy adhesive: experimental and theoretical approaches\",\"authors\":\"P. Fernando, L. Antonino, G. E. Garcia, Rogerio R. de Sousa Júnior, Antonio V. Neto, F. Y. Nakamoto, D. J. dos Santos\",\"doi\":\"10.1080/00218464.2023.2194535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Several lignin-based adhesives were developed during the last decades. More recently, lignin isolation methods were improved, leading to technical grade lignins with constant properties. This recent scenario created the required conditions for the industrial use of lignin in adhesive applications, at large scale, with reliable properties. In this work, technical grade kraft lignin was epoxidized and incorporated in industrial epoxy resin, resulting into a partly biobased epoxy resin. Notwithstanding, the mechanical properties of cured partly biobased epoxy were investigated using Arcan device, aiming to reproduce realistic load conditions for the adhesively bonded joints. At last, failure envelopes were obtained from Drucker–Prager and von Mises models, revealing the most reliable model to calculate the failure prediction. Results pointed out to the development of a partly biobased epoxy adhesive with slightly superior mechanical properties, in comparison with industrial epoxy adhesive. Indeed, an important contribution was provided for the lignin revalorization and the mechanical characterization and failure prediction of epoxy adhesive based on the modified lignin.\",\"PeriodicalId\":14778,\"journal\":{\"name\":\"Journal of Adhesion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Adhesion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00218464.2023.2194535\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Adhesion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00218464.2023.2194535","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Effects of the incorporation of modified kraft lignin on the mechanical properties of epoxy adhesive: experimental and theoretical approaches
ABSTRACT Several lignin-based adhesives were developed during the last decades. More recently, lignin isolation methods were improved, leading to technical grade lignins with constant properties. This recent scenario created the required conditions for the industrial use of lignin in adhesive applications, at large scale, with reliable properties. In this work, technical grade kraft lignin was epoxidized and incorporated in industrial epoxy resin, resulting into a partly biobased epoxy resin. Notwithstanding, the mechanical properties of cured partly biobased epoxy were investigated using Arcan device, aiming to reproduce realistic load conditions for the adhesively bonded joints. At last, failure envelopes were obtained from Drucker–Prager and von Mises models, revealing the most reliable model to calculate the failure prediction. Results pointed out to the development of a partly biobased epoxy adhesive with slightly superior mechanical properties, in comparison with industrial epoxy adhesive. Indeed, an important contribution was provided for the lignin revalorization and the mechanical characterization and failure prediction of epoxy adhesive based on the modified lignin.
期刊介绍:
The Journal of Adhesion is dedicated to perpetuating understanding of the phenomenon of adhesion and its practical applications. The art of adhesion is maturing into a science that requires a broad, coordinated interdisciplinary effort to help illuminate its complex nature and numerous manifestations.