关于某些牛顿退化函数的MILNOR FIBRATION

IF 0.8 2区 数学 Q2 MATHEMATICS
C. Eyral, M. Oka
{"title":"关于某些牛顿退化函数的MILNOR FIBRATION","authors":"C. Eyral, M. Oka","doi":"10.1017/nmj.2022.37","DOIUrl":null,"url":null,"abstract":"Abstract It is well known that the diffeomorphism type of the Milnor fibration of a (Newton) nondegenerate polynomial function f is uniquely determined by the Newton boundary of f. In the present paper, we generalize this result to certain degenerate functions, namely we show that the diffeomorphism type of the Milnor fibration of a (possibly degenerate) polynomial function of the form \n$f=f^1\\cdots f^{k_0}$\n is uniquely determined by the Newton boundaries of \n$f^1,\\ldots , f^{k_0}$\n if \n$\\{f^{k_1}=\\cdots =f^{k_m}=0\\}$\n is a nondegenerate complete intersection variety for any \n$k_1,\\ldots ,k_m\\in \\{1,\\ldots , k_0\\}$\n .","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"250 1","pages":"410 - 433"},"PeriodicalIF":0.8000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE MILNOR FIBRATION OF CERTAIN NEWTON DEGENERATE FUNCTIONS\",\"authors\":\"C. Eyral, M. Oka\",\"doi\":\"10.1017/nmj.2022.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is well known that the diffeomorphism type of the Milnor fibration of a (Newton) nondegenerate polynomial function f is uniquely determined by the Newton boundary of f. In the present paper, we generalize this result to certain degenerate functions, namely we show that the diffeomorphism type of the Milnor fibration of a (possibly degenerate) polynomial function of the form \\n$f=f^1\\\\cdots f^{k_0}$\\n is uniquely determined by the Newton boundaries of \\n$f^1,\\\\ldots , f^{k_0}$\\n if \\n$\\\\{f^{k_1}=\\\\cdots =f^{k_m}=0\\\\}$\\n is a nondegenerate complete intersection variety for any \\n$k_1,\\\\ldots ,k_m\\\\in \\\\{1,\\\\ldots , k_0\\\\}$\\n .\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"250 1\",\"pages\":\"410 - 433\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2022.37\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.37","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要众所周知,(牛顿)非退化多项式函数f的Milnor fibration的微分同胚型是由f的牛顿边界唯一确定的。本文将这一结果推广到某些退化函数,即,我们证明了形式为$f=f^1\cdots f^{k_0}$的(可能退化的)多项式函数的Milnor fibration的微分同胚型是由$f^1,\ldots,f^{k _0}$的牛顿边界唯一确定的,如果$\{f^{k_1}=\cdots=f^{k_m}=0}$对于任何$k_1,\ldot,k_m\ in \{1,\ldott,k_0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE MILNOR FIBRATION OF CERTAIN NEWTON DEGENERATE FUNCTIONS
Abstract It is well known that the diffeomorphism type of the Milnor fibration of a (Newton) nondegenerate polynomial function f is uniquely determined by the Newton boundary of f. In the present paper, we generalize this result to certain degenerate functions, namely we show that the diffeomorphism type of the Milnor fibration of a (possibly degenerate) polynomial function of the form $f=f^1\cdots f^{k_0}$ is uniquely determined by the Newton boundaries of $f^1,\ldots , f^{k_0}$ if $\{f^{k_1}=\cdots =f^{k_m}=0\}$ is a nondegenerate complete intersection variety for any $k_1,\ldots ,k_m\in \{1,\ldots , k_0\}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信