{"title":"威廉姆森定理的多元版本,1-对称生存函数,和广义阿基米德copuls","authors":"P. Ressel","doi":"10.1515/demo-2018-0020","DOIUrl":null,"url":null,"abstract":"Abstract Williamson’s integral representation of n-monotone functions on the half-line is generalized to several dimensions. This leads to a characterization of multivariate survival functions with multiply ℓ1- symmetry. We then introduce a new class of generalized Archimedean copulas, where in contrast to nested Archimedean copulas no extra compatibility conditions for their generators are required.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"6 1","pages":"356 - 368"},"PeriodicalIF":0.6000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2018-0020","citationCount":"4","resultStr":"{\"title\":\"A multivariate version of Williamson’s theorem, ℓ1-symmetric survival functions, and generalized Archimedean copulas\",\"authors\":\"P. Ressel\",\"doi\":\"10.1515/demo-2018-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Williamson’s integral representation of n-monotone functions on the half-line is generalized to several dimensions. This leads to a characterization of multivariate survival functions with multiply ℓ1- symmetry. We then introduce a new class of generalized Archimedean copulas, where in contrast to nested Archimedean copulas no extra compatibility conditions for their generators are required.\",\"PeriodicalId\":43690,\"journal\":{\"name\":\"Dependence Modeling\",\"volume\":\"6 1\",\"pages\":\"356 - 368\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/demo-2018-0020\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dependence Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/demo-2018-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2018-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A multivariate version of Williamson’s theorem, ℓ1-symmetric survival functions, and generalized Archimedean copulas
Abstract Williamson’s integral representation of n-monotone functions on the half-line is generalized to several dimensions. This leads to a characterization of multivariate survival functions with multiply ℓ1- symmetry. We then introduce a new class of generalized Archimedean copulas, where in contrast to nested Archimedean copulas no extra compatibility conditions for their generators are required.
期刊介绍:
The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to): -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations