一系列茶碱衍生物aldh1a1抑制剂的计算筛选与qsar研究

Firas Fadel, N. Tchouar, S. Belaidi, F. Soualmia, O. Oukil, K. Ouadah
{"title":"一系列茶碱衍生物aldh1a1抑制剂的计算筛选与qsar研究","authors":"Firas Fadel, N. Tchouar, S. Belaidi, F. Soualmia, O. Oukil, K. Ouadah","doi":"10.4314/JFAS.V13I2.17","DOIUrl":null,"url":null,"abstract":"In the present study, we explored a series of molecules with anticancer activity, so that qualitative and quantitative studies of the structure-activity relationship (SAR/QSAR) were performed on seventeen theophylline derivatives. These are inhibitors of ALDH1A1. The present study shows the importance of quantum chemical descriptors, constitutional descriptors and hydrophobicity to develop a better QSAR model, whose studied descriptors are LogP, MW, Pol, MR, S, V, HE, DM, EHOMO and ELUMO. A multiple linear regression (MLR) and artificial neural networks (ANN) procedure was used to design the relationships between molecular descriptors and the inhibition of ALDH1A1 by theophylline derivatives. The validation and good quality of the QSAR model are confirmed by a strong correlation between experimental and predicted activity.","PeriodicalId":15885,"journal":{"name":"Journal of Fundamental and Applied Sciences","volume":"13 1","pages":"942-964"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COMPUTATIONAL SCREENING AND QSAR STUDY ON A SERIES THEOPHYLLINE DERIVATIVES AS ALDH1A1 INHIBITORS\",\"authors\":\"Firas Fadel, N. Tchouar, S. Belaidi, F. Soualmia, O. Oukil, K. Ouadah\",\"doi\":\"10.4314/JFAS.V13I2.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, we explored a series of molecules with anticancer activity, so that qualitative and quantitative studies of the structure-activity relationship (SAR/QSAR) were performed on seventeen theophylline derivatives. These are inhibitors of ALDH1A1. The present study shows the importance of quantum chemical descriptors, constitutional descriptors and hydrophobicity to develop a better QSAR model, whose studied descriptors are LogP, MW, Pol, MR, S, V, HE, DM, EHOMO and ELUMO. A multiple linear regression (MLR) and artificial neural networks (ANN) procedure was used to design the relationships between molecular descriptors and the inhibition of ALDH1A1 by theophylline derivatives. The validation and good quality of the QSAR model are confirmed by a strong correlation between experimental and predicted activity.\",\"PeriodicalId\":15885,\"journal\":{\"name\":\"Journal of Fundamental and Applied Sciences\",\"volume\":\"13 1\",\"pages\":\"942-964\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fundamental and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/JFAS.V13I2.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/JFAS.V13I2.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,我们探索了一系列具有抗癌活性的分子,从而对17种茶碱衍生物的构效关系(SAR/QSAR)进行了定性和定量研究。这些是ALDH1A1的抑制剂。本研究表明了量子化学描述符、组成描述符和疏水性对于开发更好的QSAR模型的重要性,其研究的描述符为LogP、MW、Pol、MR、S、V、HE、DM、EHOMO和ELUMO。采用多元线性回归(MLR)和人工神经网络(ANN)程序设计了分子描述符与茶碱衍生物抑制ALDH1A1之间的关系。实验活性和预测活性之间的强相关性证实了QSAR模型的有效性和良好的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COMPUTATIONAL SCREENING AND QSAR STUDY ON A SERIES THEOPHYLLINE DERIVATIVES AS ALDH1A1 INHIBITORS
In the present study, we explored a series of molecules with anticancer activity, so that qualitative and quantitative studies of the structure-activity relationship (SAR/QSAR) were performed on seventeen theophylline derivatives. These are inhibitors of ALDH1A1. The present study shows the importance of quantum chemical descriptors, constitutional descriptors and hydrophobicity to develop a better QSAR model, whose studied descriptors are LogP, MW, Pol, MR, S, V, HE, DM, EHOMO and ELUMO. A multiple linear regression (MLR) and artificial neural networks (ANN) procedure was used to design the relationships between molecular descriptors and the inhibition of ALDH1A1 by theophylline derivatives. The validation and good quality of the QSAR model are confirmed by a strong correlation between experimental and predicted activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信