Toeplitz算子和Wiener-Hopf分解:介绍

IF 0.3 Q4 MATHEMATICS
M. Câmara
{"title":"Toeplitz算子和Wiener-Hopf分解:介绍","authors":"M. Câmara","doi":"10.1515/conop-2017-0010","DOIUrl":null,"url":null,"abstract":"Abstract Wiener-Hopf factorisation plays an important role in the theory of Toeplitz operators. We consider here Toeplitz operators in the Hardy spaces Hp of the upper half-plane and we review how their Fredholm properties can be studied in terms of a Wiener-Hopf factorisation of their symbols, obtaining necessary and sufficient conditions for the operator to be Fredholm or invertible, as well as formulae for their inverses or one-sided inverses when these exist. The results are applied to a class of singular integral equations in L−1(ℝ)","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2017-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2017-0010","citationCount":"7","resultStr":"{\"title\":\"Toeplitz operators and Wiener-Hopf factorisation: an introduction\",\"authors\":\"M. Câmara\",\"doi\":\"10.1515/conop-2017-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Wiener-Hopf factorisation plays an important role in the theory of Toeplitz operators. We consider here Toeplitz operators in the Hardy spaces Hp of the upper half-plane and we review how their Fredholm properties can be studied in terms of a Wiener-Hopf factorisation of their symbols, obtaining necessary and sufficient conditions for the operator to be Fredholm or invertible, as well as formulae for their inverses or one-sided inverses when these exist. The results are applied to a class of singular integral equations in L−1(ℝ)\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2017-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2017-0010\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2017-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2017-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

摘要Wiener-Hopf因子分解在Toeplitz算子理论中占有重要地位。我们在这里考虑上半平面的Hardy空间Hp中的Toeplitz算子,并回顾了如何根据其符号的Wiener-Hopf因子分解来研究它们的Fredholm性质,获得了算子是Fredholm或可逆的充要条件,以及当这些条件存在时它们的逆或单侧逆的公式。将结果应用于L-1中的一类奇异积分方程(ℝ)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toeplitz operators and Wiener-Hopf factorisation: an introduction
Abstract Wiener-Hopf factorisation plays an important role in the theory of Toeplitz operators. We consider here Toeplitz operators in the Hardy spaces Hp of the upper half-plane and we review how their Fredholm properties can be studied in terms of a Wiener-Hopf factorisation of their symbols, obtaining necessary and sufficient conditions for the operator to be Fredholm or invertible, as well as formulae for their inverses or one-sided inverses when these exist. The results are applied to a class of singular integral equations in L−1(ℝ)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信