{"title":"铀酰钼酸盐钙镁石Ca[(UO2)3(MoO4)2(OH)4](H2O)≈5.0的晶体结构:来自进动电子衍射层析研究的见解","authors":"G. Steciuk, R. Škoda, J. Rohlíček, J. Plášil","doi":"10.3190/jgeosci.297","DOIUrl":null,"url":null,"abstract":"Calcurmolite is a rare supergene U mineral formed during the alteration–hydration weathering of uraninite and hypogene Mo minerals; its structure has remained unsolved owing to a lack of crystal material suitable for conventional structure analysis. Here, single-crystal precession electron-diffraction tomography shows the calcurmolite (Rabejac, France) structure to be modulated; it is triclinic, crystallizing in the super-space group P1(α00)0, with a = 3.938 Å, b = 11.26 Å, c = 14.195 Å, α = 84.4°, β = 112.5°, γ = 133.95° and has a modulation vector q = 0.4 a*. Due to the poor quality of diffraction data, only a kinematical refinement was undertaken, although final results were reasonable: Robs/Rall = 0.3825/0.3834 for 3953/17442 observed/all reflections. The structure of calcurmolite is based upon the infinite uranyl–molybdate sheets with baumoite topology (U : Mo ratio = 1.5) and an interlayer of 6-coordinated Ca2+ cations with interstitial H2O (ligands are apical uranyl O atoms and molecular H2O). Adjacent sheets are linked via Ca–O, as well as H-bonds. The structure formula, based on assumed occupancies in the supercell 5a × b × c, is Ca[(UO2)3 (MoO4)2(OH)4](H2O)~5.0 (for Z = 4).","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"65 1","pages":"15-25"},"PeriodicalIF":1.1000,"publicationDate":"2020-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Crystal structure of the uranyl-molybdate mineral calcurmolite Ca[(UO2)3(MoO4)2(OH)4](H2O)˜5.0: insights from a precession electron-diffraction tomography study\",\"authors\":\"G. Steciuk, R. Škoda, J. Rohlíček, J. Plášil\",\"doi\":\"10.3190/jgeosci.297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calcurmolite is a rare supergene U mineral formed during the alteration–hydration weathering of uraninite and hypogene Mo minerals; its structure has remained unsolved owing to a lack of crystal material suitable for conventional structure analysis. Here, single-crystal precession electron-diffraction tomography shows the calcurmolite (Rabejac, France) structure to be modulated; it is triclinic, crystallizing in the super-space group P1(α00)0, with a = 3.938 Å, b = 11.26 Å, c = 14.195 Å, α = 84.4°, β = 112.5°, γ = 133.95° and has a modulation vector q = 0.4 a*. Due to the poor quality of diffraction data, only a kinematical refinement was undertaken, although final results were reasonable: Robs/Rall = 0.3825/0.3834 for 3953/17442 observed/all reflections. The structure of calcurmolite is based upon the infinite uranyl–molybdate sheets with baumoite topology (U : Mo ratio = 1.5) and an interlayer of 6-coordinated Ca2+ cations with interstitial H2O (ligands are apical uranyl O atoms and molecular H2O). Adjacent sheets are linked via Ca–O, as well as H-bonds. The structure formula, based on assumed occupancies in the supercell 5a × b × c, is Ca[(UO2)3 (MoO4)2(OH)4](H2O)~5.0 (for Z = 4).\",\"PeriodicalId\":15957,\"journal\":{\"name\":\"Journal of Geosciences\",\"volume\":\"65 1\",\"pages\":\"15-25\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3190/jgeosci.297\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3190/jgeosci.297","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Crystal structure of the uranyl-molybdate mineral calcurmolite Ca[(UO2)3(MoO4)2(OH)4](H2O)˜5.0: insights from a precession electron-diffraction tomography study
Calcurmolite is a rare supergene U mineral formed during the alteration–hydration weathering of uraninite and hypogene Mo minerals; its structure has remained unsolved owing to a lack of crystal material suitable for conventional structure analysis. Here, single-crystal precession electron-diffraction tomography shows the calcurmolite (Rabejac, France) structure to be modulated; it is triclinic, crystallizing in the super-space group P1(α00)0, with a = 3.938 Å, b = 11.26 Å, c = 14.195 Å, α = 84.4°, β = 112.5°, γ = 133.95° and has a modulation vector q = 0.4 a*. Due to the poor quality of diffraction data, only a kinematical refinement was undertaken, although final results were reasonable: Robs/Rall = 0.3825/0.3834 for 3953/17442 observed/all reflections. The structure of calcurmolite is based upon the infinite uranyl–molybdate sheets with baumoite topology (U : Mo ratio = 1.5) and an interlayer of 6-coordinated Ca2+ cations with interstitial H2O (ligands are apical uranyl O atoms and molecular H2O). Adjacent sheets are linked via Ca–O, as well as H-bonds. The structure formula, based on assumed occupancies in the supercell 5a × b × c, is Ca[(UO2)3 (MoO4)2(OH)4](H2O)~5.0 (for Z = 4).
期刊介绍:
The Journal of Geosciences is an international peer-reviewed journal published by the Czech Geological Society with support from the Czech Geological Survey. It accepts high-quality original research or review papers dealing with all aspects of the nature and origin of igneous and metamorphic rocks. The Journal focuses, mainly but not exclusively, on:
-Process-oriented regional studies of igneous and metamorphic complexes-
Research in structural geology and tectonics-
Igneous and metamorphic petrology-
Mineral chemistry and mineralogy-
Major- and trace-element geochemistry, isotope geochemistry-
Dating igneous activity and metamorphic events-
Experimental petrology and mineralogy-
Theoretical models of igneous and metamorphic processes-
Mineralizing processes and mineral deposits.
All the papers are written in English, even though they may be accompanied by an additional Czech abstract. Each contribution is a subject to peer review by at least two independent reviewers, typically at least one from abroad. The Journal appears 2 to 4 times a year. Formally it is divided in annual volumes, each of them including 4 issues.