{"title":"使用多gnss(单、双、三)频率观测的静态ppp性能","authors":"A. Farah","doi":"10.58825/jog.2023.17.1.80","DOIUrl":null,"url":null,"abstract":"Precise Point Positioning (PPP) is relatively modern GNSS positioning technique that proved its efficiency comparing with traditional Differential positioning technique for more than three decades. PPP requires only one receiver collecting observations at unknown station, while Differential technique requires two receivers collecting observations simultaneously one at known-position station and the other at unknown station. Extensive mitigation of different GNSS errors is essential for PPP-collected observations. Static-PPP accuracy depends on different factors such as; used GNSS system; single (GPS(G) or GLONASS(R) or BeiDou(C) or Galileo(E)) or mixed-GNSS systems (GPS/GLONASS or GPS/GLONASS/BeiDou or GPS/GLONASS/BeiDou/Galileo), observations type (single or dual or triple frequency), satellites geometry and observations duration. This research investigates static-PPP accuracy variation on three different-latitude IGS stations based on different factors; used GNSS system (single or mixed), observations type (single or dual or triple frequency) and satellites geometry. It can be concluded that GRCE combination provides 3D-accuracy of (8 cm) using single frequency observations, (1.5 mm) using dual frequency observations and (1 mm) using triple frequency observations. GRCE combination provides a convergence time of only four minutes (8 epochs) for dual frequency observations. ","PeriodicalId":53688,"journal":{"name":"测绘地理信息","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Static-PPP Performance using Multi-GNSS (Single, Dual and Triple) Frequency Observations\",\"authors\":\"A. Farah\",\"doi\":\"10.58825/jog.2023.17.1.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise Point Positioning (PPP) is relatively modern GNSS positioning technique that proved its efficiency comparing with traditional Differential positioning technique for more than three decades. PPP requires only one receiver collecting observations at unknown station, while Differential technique requires two receivers collecting observations simultaneously one at known-position station and the other at unknown station. Extensive mitigation of different GNSS errors is essential for PPP-collected observations. Static-PPP accuracy depends on different factors such as; used GNSS system; single (GPS(G) or GLONASS(R) or BeiDou(C) or Galileo(E)) or mixed-GNSS systems (GPS/GLONASS or GPS/GLONASS/BeiDou or GPS/GLONASS/BeiDou/Galileo), observations type (single or dual or triple frequency), satellites geometry and observations duration. This research investigates static-PPP accuracy variation on three different-latitude IGS stations based on different factors; used GNSS system (single or mixed), observations type (single or dual or triple frequency) and satellites geometry. It can be concluded that GRCE combination provides 3D-accuracy of (8 cm) using single frequency observations, (1.5 mm) using dual frequency observations and (1 mm) using triple frequency observations. GRCE combination provides a convergence time of only four minutes (8 epochs) for dual frequency observations. \",\"PeriodicalId\":53688,\"journal\":{\"name\":\"测绘地理信息\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"测绘地理信息\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.58825/jog.2023.17.1.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"测绘地理信息","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.58825/jog.2023.17.1.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Static-PPP Performance using Multi-GNSS (Single, Dual and Triple) Frequency Observations
Precise Point Positioning (PPP) is relatively modern GNSS positioning technique that proved its efficiency comparing with traditional Differential positioning technique for more than three decades. PPP requires only one receiver collecting observations at unknown station, while Differential technique requires two receivers collecting observations simultaneously one at known-position station and the other at unknown station. Extensive mitigation of different GNSS errors is essential for PPP-collected observations. Static-PPP accuracy depends on different factors such as; used GNSS system; single (GPS(G) or GLONASS(R) or BeiDou(C) or Galileo(E)) or mixed-GNSS systems (GPS/GLONASS or GPS/GLONASS/BeiDou or GPS/GLONASS/BeiDou/Galileo), observations type (single or dual or triple frequency), satellites geometry and observations duration. This research investigates static-PPP accuracy variation on three different-latitude IGS stations based on different factors; used GNSS system (single or mixed), observations type (single or dual or triple frequency) and satellites geometry. It can be concluded that GRCE combination provides 3D-accuracy of (8 cm) using single frequency observations, (1.5 mm) using dual frequency observations and (1 mm) using triple frequency observations. GRCE combination provides a convergence time of only four minutes (8 epochs) for dual frequency observations.