印度可持续智能电网的无线技术优化选择方法

Q3 Environmental Science
Jignesh Bhatt, O. Jani, V. Harish
{"title":"印度可持续智能电网的无线技术优化选择方法","authors":"Jignesh Bhatt, O. Jani, V. Harish","doi":"10.13052/spee1048-4236.4033","DOIUrl":null,"url":null,"abstract":"The smart grid is playing a game-changing role in achieving clean and green energy, infrastructure, and cities, which are all part of the sustainable development goals. The significance of communication infrastructure in the reliable design and operation of the smart grid is well recognized, notably for renewable integration, facilitating distributed energy resources and storage, demand response, and energy efficiency. Since choosing the optimal communication technology is a strategic decision, the problem needs careful investigation, taking into account realistic data traffic estimates to fulfill the communication needs of the applications envisaged. Even though a vast array of technologies with diverse capabilities is available to meet such communication needs, choosing the optimal wireless technology for a smart grid project remains a difficult challenge. In this context, to achieve and maximize the benefits of the smart grid and its applications, a systematic and efficient approach is necessary. This study proposes a data-driven decision-making approach for evaluating the capabilities of viable wireless technology options and selecting the most suitable option for the smart grid project at the design phase. The suggested approach and the decision-support tool were developed using a cost-function-based optimization technique. A case study of Siliguri city Indian smart grid pilot is discussed to validate the potential and aptness of the presented approach and suggest better technology alternatives as replacements. Being field data-driven, the presented optimization approach is simple, customizable, strategic, and re-usable with practical efficacy to assist decision-making.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Wireless Technology Selection Approach for Sustainable Indian Smart Grid\",\"authors\":\"Jignesh Bhatt, O. Jani, V. Harish\",\"doi\":\"10.13052/spee1048-4236.4033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smart grid is playing a game-changing role in achieving clean and green energy, infrastructure, and cities, which are all part of the sustainable development goals. The significance of communication infrastructure in the reliable design and operation of the smart grid is well recognized, notably for renewable integration, facilitating distributed energy resources and storage, demand response, and energy efficiency. Since choosing the optimal communication technology is a strategic decision, the problem needs careful investigation, taking into account realistic data traffic estimates to fulfill the communication needs of the applications envisaged. Even though a vast array of technologies with diverse capabilities is available to meet such communication needs, choosing the optimal wireless technology for a smart grid project remains a difficult challenge. In this context, to achieve and maximize the benefits of the smart grid and its applications, a systematic and efficient approach is necessary. This study proposes a data-driven decision-making approach for evaluating the capabilities of viable wireless technology options and selecting the most suitable option for the smart grid project at the design phase. The suggested approach and the decision-support tool were developed using a cost-function-based optimization technique. A case study of Siliguri city Indian smart grid pilot is discussed to validate the potential and aptness of the presented approach and suggest better technology alternatives as replacements. Being field data-driven, the presented optimization approach is simple, customizable, strategic, and re-usable with practical efficacy to assist decision-making.\",\"PeriodicalId\":35712,\"journal\":{\"name\":\"Strategic Planning for Energy and the Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strategic Planning for Energy and the Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/spee1048-4236.4033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-4236.4033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

摘要

智能电网在实现清洁和绿色能源、基础设施和城市方面发挥着改变游戏规则的作用,这些都是可持续发展目标的一部分。通信基础设施在智能电网可靠设计和运行中的重要性得到了广泛认可,尤其是在可再生能源整合、促进分布式能源资源和存储、需求响应和能源效率方面。由于选择最佳通信技术是一项战略决策,因此需要仔细研究该问题,同时考虑实际的数据流量估计,以满足所设想的应用程序的通信需求。尽管有大量具有不同功能的技术可用于满足此类通信需求,但为智能电网项目选择最佳无线技术仍然是一项艰巨的挑战。在这种情况下,为了实现并最大限度地发挥智能电网及其应用的效益,有必要采取系统有效的方法。本研究提出了一种数据驱动的决策方法,用于评估可行的无线技术选项的能力,并在设计阶段为智能电网项目选择最合适的选项。所提出的方法和决策支持工具是使用基于成本函数的优化技术开发的。讨论了西里古里市印度智能电网试点的案例研究,以验证所提出方法的潜力和适用性,并提出更好的技术替代方案。作为现场数据驱动的优化方法,所提出的优化方法简单、可定制、具有战略意义且可重复使用,具有辅助决策的实际功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Wireless Technology Selection Approach for Sustainable Indian Smart Grid
The smart grid is playing a game-changing role in achieving clean and green energy, infrastructure, and cities, which are all part of the sustainable development goals. The significance of communication infrastructure in the reliable design and operation of the smart grid is well recognized, notably for renewable integration, facilitating distributed energy resources and storage, demand response, and energy efficiency. Since choosing the optimal communication technology is a strategic decision, the problem needs careful investigation, taking into account realistic data traffic estimates to fulfill the communication needs of the applications envisaged. Even though a vast array of technologies with diverse capabilities is available to meet such communication needs, choosing the optimal wireless technology for a smart grid project remains a difficult challenge. In this context, to achieve and maximize the benefits of the smart grid and its applications, a systematic and efficient approach is necessary. This study proposes a data-driven decision-making approach for evaluating the capabilities of viable wireless technology options and selecting the most suitable option for the smart grid project at the design phase. The suggested approach and the decision-support tool were developed using a cost-function-based optimization technique. A case study of Siliguri city Indian smart grid pilot is discussed to validate the potential and aptness of the presented approach and suggest better technology alternatives as replacements. Being field data-driven, the presented optimization approach is simple, customizable, strategic, and re-usable with practical efficacy to assist decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strategic Planning for Energy and the Environment
Strategic Planning for Energy and the Environment Environmental Science-Environmental Science (all)
CiteScore
1.50
自引率
0.00%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信