{"title":"在第一个穿越两个星际文明的探测器上","authors":"Graeme H. Smith","doi":"10.1017/s1473550422000428","DOIUrl":null,"url":null,"abstract":"\n If a space-faring civilization embarks on a program to send probes to interstellar destinations, the first probe to arrive at such a destination is not likely to be one of the earliest probes, but one of much more advanced capability. This conclusion is based on a scenario in which an extraterrestrial civilization (ETC) embarks upon an interstellar program during which it launches increasingly sophisticated probes whose departure speed increases as a function of time throughout the program. Two back-of-the-envelope models are considered: one in which the launch velocity of an outgoing vehicle increases linearly with the time of launch, and a second in which the increase is exponential with launch date. In this paper consideration is directed to an hypothesized probe arriving within the Solar System from a non-terrestrial civilization. Within the above scenarios, a first-encounter probe will be one that was launched well after the initiation of an interstellar program by an ETC. Consequently, such a probe would be the product of a relatively advanced phase of that ETC's technology. The more distant the site from which an ETC is launching probes, the greater will be the technology gap between a first-encounter probe and terrestrial technology. One possible ramification may pertain to interpreting the nature of Unidentified Aerial Phenomena (UAP). Are flight characteristics of any UAP singular enough as to be consistent with an origin from a distant ETC?","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the first probe to transit between two interstellar civilizations\",\"authors\":\"Graeme H. Smith\",\"doi\":\"10.1017/s1473550422000428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n If a space-faring civilization embarks on a program to send probes to interstellar destinations, the first probe to arrive at such a destination is not likely to be one of the earliest probes, but one of much more advanced capability. This conclusion is based on a scenario in which an extraterrestrial civilization (ETC) embarks upon an interstellar program during which it launches increasingly sophisticated probes whose departure speed increases as a function of time throughout the program. Two back-of-the-envelope models are considered: one in which the launch velocity of an outgoing vehicle increases linearly with the time of launch, and a second in which the increase is exponential with launch date. In this paper consideration is directed to an hypothesized probe arriving within the Solar System from a non-terrestrial civilization. Within the above scenarios, a first-encounter probe will be one that was launched well after the initiation of an interstellar program by an ETC. Consequently, such a probe would be the product of a relatively advanced phase of that ETC's technology. The more distant the site from which an ETC is launching probes, the greater will be the technology gap between a first-encounter probe and terrestrial technology. One possible ramification may pertain to interpreting the nature of Unidentified Aerial Phenomena (UAP). Are flight characteristics of any UAP singular enough as to be consistent with an origin from a distant ETC?\",\"PeriodicalId\":13879,\"journal\":{\"name\":\"International Journal of Astrobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s1473550422000428\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s1473550422000428","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
On the first probe to transit between two interstellar civilizations
If a space-faring civilization embarks on a program to send probes to interstellar destinations, the first probe to arrive at such a destination is not likely to be one of the earliest probes, but one of much more advanced capability. This conclusion is based on a scenario in which an extraterrestrial civilization (ETC) embarks upon an interstellar program during which it launches increasingly sophisticated probes whose departure speed increases as a function of time throughout the program. Two back-of-the-envelope models are considered: one in which the launch velocity of an outgoing vehicle increases linearly with the time of launch, and a second in which the increase is exponential with launch date. In this paper consideration is directed to an hypothesized probe arriving within the Solar System from a non-terrestrial civilization. Within the above scenarios, a first-encounter probe will be one that was launched well after the initiation of an interstellar program by an ETC. Consequently, such a probe would be the product of a relatively advanced phase of that ETC's technology. The more distant the site from which an ETC is launching probes, the greater will be the technology gap between a first-encounter probe and terrestrial technology. One possible ramification may pertain to interpreting the nature of Unidentified Aerial Phenomena (UAP). Are flight characteristics of any UAP singular enough as to be consistent with an origin from a distant ETC?
期刊介绍:
International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.