{"title":"Whitham型方程对初始数据的非一致依赖","authors":"Mathias Nikolai Arnesen","doi":"10.57262/ade/1554256825","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem ∂tu + u∂xu + L(∂xu) = 0, u(0, x) = u0(x) on the torus and on the real line for a class of Fourier multiplier operators L, and prove that the solution map u0 7→ u(t) is not uniformly continuous in H(T) or H(R) for s > 3 2 . Under certain assumptions, the result also hold for s > 0. The class of equations considered includes in particular the Whitham equation and fractional Korteweg-de Vries equations and we show that, in general, the flow map cannot be uniformly continuous if the dispersion of L is weaker than that of the KdV operator. The result is proved by constructing two sequences of solutions converging to the same limit at the initial time, while the distance at a later time is bounded below by a positive constant.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Non-uniform dependence on initial data for equations of Whitham type\",\"authors\":\"Mathias Nikolai Arnesen\",\"doi\":\"10.57262/ade/1554256825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cauchy problem ∂tu + u∂xu + L(∂xu) = 0, u(0, x) = u0(x) on the torus and on the real line for a class of Fourier multiplier operators L, and prove that the solution map u0 7→ u(t) is not uniformly continuous in H(T) or H(R) for s > 3 2 . Under certain assumptions, the result also hold for s > 0. The class of equations considered includes in particular the Whitham equation and fractional Korteweg-de Vries equations and we show that, in general, the flow map cannot be uniformly continuous if the dispersion of L is weaker than that of the KdV operator. The result is proved by constructing two sequences of solutions converging to the same limit at the initial time, while the distance at a later time is bounded below by a positive constant.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade/1554256825\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade/1554256825","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Non-uniform dependence on initial data for equations of Whitham type
We consider the Cauchy problem ∂tu + u∂xu + L(∂xu) = 0, u(0, x) = u0(x) on the torus and on the real line for a class of Fourier multiplier operators L, and prove that the solution map u0 7→ u(t) is not uniformly continuous in H(T) or H(R) for s > 3 2 . Under certain assumptions, the result also hold for s > 0. The class of equations considered includes in particular the Whitham equation and fractional Korteweg-de Vries equations and we show that, in general, the flow map cannot be uniformly continuous if the dispersion of L is weaker than that of the KdV operator. The result is proved by constructing two sequences of solutions converging to the same limit at the initial time, while the distance at a later time is bounded below by a positive constant.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.