平衡数周期与连续卢卡斯平衡数的模积

Q4 Mathematics
Bijan Kumar Patel, S. K. Sunanda, P. Ray
{"title":"平衡数周期与连续卢卡斯平衡数的模积","authors":"Bijan Kumar Patel, S. K. Sunanda, P. Ray","doi":"10.24193/MATHCLUJ.2018.2.10","DOIUrl":null,"url":null,"abstract":"The period of the balancing numbers modulo m, denoted by π(m), is the least positive integer l such that {Bl, Bl+1} ≡ {0, 1} (mod m), where Bl denotes the l-th balancing number. In the present study, we examine the periods of the balancing numbers modulo a product of consecutive Lucas-balancing numbers. MSC 2010. 11B39.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Period of balancing numbers modulo product of consecutive Lucas-balancing numbers\",\"authors\":\"Bijan Kumar Patel, S. K. Sunanda, P. Ray\",\"doi\":\"10.24193/MATHCLUJ.2018.2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The period of the balancing numbers modulo m, denoted by π(m), is the least positive integer l such that {Bl, Bl+1} ≡ {0, 1} (mod m), where Bl denotes the l-th balancing number. In the present study, we examine the periods of the balancing numbers modulo a product of consecutive Lucas-balancing numbers. MSC 2010. 11B39.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/MATHCLUJ.2018.2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/MATHCLUJ.2018.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

平衡数模m的周期,用π(m)表示,是最小的正整数l,使得{Bl,Bl+1}Select{0,1}(mod m),其中Bl表示第l个平衡数。在本研究中,我们检验了平衡数模连续Lucas平衡数乘积的周期。MSC 2010。11B39。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Period of balancing numbers modulo product of consecutive Lucas-balancing numbers
The period of the balancing numbers modulo m, denoted by π(m), is the least positive integer l such that {Bl, Bl+1} ≡ {0, 1} (mod m), where Bl denotes the l-th balancing number. In the present study, we examine the periods of the balancing numbers modulo a product of consecutive Lucas-balancing numbers. MSC 2010. 11B39.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信