{"title":"用快速有限元法分析毫米波应用中的斜切弯曲二路、四路和八路SIW功率分配器","authors":"B. Fellah, N. Cherif, M. Abri, H. Badaoui","doi":"10.7716/aem.v11i3.1817","DOIUrl":null,"url":null,"abstract":"In this paper, we propose three kinds of substrate-integrated waveguide (SIWs) based chamfered bend power divider junctions provide equal power distribution to all output ports while maintaining high isolation and operating in the 54 GHz to 60 GHz frequency band. The advantages of the SIW technology are ease of design, fabrication and low form and full integration with planar printed circuits. In this case, the concept of the SIW H-plane power divider is implemented using a rigorous two-dimensional quick finite element method (2D-QFEM) programmed by MATLAB software. The numerical performance of this method is the Quick simulation time for using the mesh with Delaunay regularization in two dimensions, if we increase the mesh the FEM gives better results. This paper presents the transmission coefficient, return loss and the electric field distribution. The results obtained from QFEM were compared with those provided by HFSS for validation. When using the discretization with the Delaunay procedure only in two dimensions, we notice that the calculated simulation time decreases with good precision.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The chamfered bend two, four and eight-way SIW power dividers analysis for millimeter wave applications using the quick finite element method\",\"authors\":\"B. Fellah, N. Cherif, M. Abri, H. Badaoui\",\"doi\":\"10.7716/aem.v11i3.1817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose three kinds of substrate-integrated waveguide (SIWs) based chamfered bend power divider junctions provide equal power distribution to all output ports while maintaining high isolation and operating in the 54 GHz to 60 GHz frequency band. The advantages of the SIW technology are ease of design, fabrication and low form and full integration with planar printed circuits. In this case, the concept of the SIW H-plane power divider is implemented using a rigorous two-dimensional quick finite element method (2D-QFEM) programmed by MATLAB software. The numerical performance of this method is the Quick simulation time for using the mesh with Delaunay regularization in two dimensions, if we increase the mesh the FEM gives better results. This paper presents the transmission coefficient, return loss and the electric field distribution. The results obtained from QFEM were compared with those provided by HFSS for validation. When using the discretization with the Delaunay procedure only in two dimensions, we notice that the calculated simulation time decreases with good precision.\",\"PeriodicalId\":44653,\"journal\":{\"name\":\"Advanced Electromagnetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7716/aem.v11i3.1817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v11i3.1817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The chamfered bend two, four and eight-way SIW power dividers analysis for millimeter wave applications using the quick finite element method
In this paper, we propose three kinds of substrate-integrated waveguide (SIWs) based chamfered bend power divider junctions provide equal power distribution to all output ports while maintaining high isolation and operating in the 54 GHz to 60 GHz frequency band. The advantages of the SIW technology are ease of design, fabrication and low form and full integration with planar printed circuits. In this case, the concept of the SIW H-plane power divider is implemented using a rigorous two-dimensional quick finite element method (2D-QFEM) programmed by MATLAB software. The numerical performance of this method is the Quick simulation time for using the mesh with Delaunay regularization in two dimensions, if we increase the mesh the FEM gives better results. This paper presents the transmission coefficient, return loss and the electric field distribution. The results obtained from QFEM were compared with those provided by HFSS for validation. When using the discretization with the Delaunay procedure only in two dimensions, we notice that the calculated simulation time decreases with good precision.
期刊介绍:
Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.