{"title":"毛利塔尼蛇酸水解产乙醇工艺的优化。","authors":"C. May, A. Moussa","doi":"10.37763/wr.1336-4561/65.6.10131024","DOIUrl":null,"url":null,"abstract":"In this work, statistical modeling and optimization of hydrolyzate from Ampelodesmos mauritanicus (Diss) using 1.5% sulfuric acid hydrolysis was carried. A central composite design (CCD) model was used to study the influence of reaction temperature (70°C to 110°C), ratio (5% to 15%, w/v), and reaction time (60 to 180 min). Reducing sugars, pH, proteins, lignin, ash content and the elements minerals composition were determined. Optimized reducing sugars yield of 0.249 g.g-1 of dry weight was obtained for reaction time of 180 min, reaction temperature of 110°C and ratio 5% (w/v). Therefore, this study tests the production of bioethanol from pure Diss hydrolyzate by the yeast Saccharomyces cerevisiae ATCC 9763. This strain showed a consumption of 67.6% of reducing sugars available (25 g.L-1), which made it possible to obtain ethanol yield per consumed sugar 0.33 g.g-1.","PeriodicalId":23786,"journal":{"name":"Wood Research","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimisation of acid hydrolysis in ethanol production from Ampelodesmos mauritanicus (Diss).\",\"authors\":\"C. May, A. Moussa\",\"doi\":\"10.37763/wr.1336-4561/65.6.10131024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, statistical modeling and optimization of hydrolyzate from Ampelodesmos mauritanicus (Diss) using 1.5% sulfuric acid hydrolysis was carried. A central composite design (CCD) model was used to study the influence of reaction temperature (70°C to 110°C), ratio (5% to 15%, w/v), and reaction time (60 to 180 min). Reducing sugars, pH, proteins, lignin, ash content and the elements minerals composition were determined. Optimized reducing sugars yield of 0.249 g.g-1 of dry weight was obtained for reaction time of 180 min, reaction temperature of 110°C and ratio 5% (w/v). Therefore, this study tests the production of bioethanol from pure Diss hydrolyzate by the yeast Saccharomyces cerevisiae ATCC 9763. This strain showed a consumption of 67.6% of reducing sugars available (25 g.L-1), which made it possible to obtain ethanol yield per consumed sugar 0.33 g.g-1.\",\"PeriodicalId\":23786,\"journal\":{\"name\":\"Wood Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.37763/wr.1336-4561/65.6.10131024\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37763/wr.1336-4561/65.6.10131024","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Optimisation of acid hydrolysis in ethanol production from Ampelodesmos mauritanicus (Diss).
In this work, statistical modeling and optimization of hydrolyzate from Ampelodesmos mauritanicus (Diss) using 1.5% sulfuric acid hydrolysis was carried. A central composite design (CCD) model was used to study the influence of reaction temperature (70°C to 110°C), ratio (5% to 15%, w/v), and reaction time (60 to 180 min). Reducing sugars, pH, proteins, lignin, ash content and the elements minerals composition were determined. Optimized reducing sugars yield of 0.249 g.g-1 of dry weight was obtained for reaction time of 180 min, reaction temperature of 110°C and ratio 5% (w/v). Therefore, this study tests the production of bioethanol from pure Diss hydrolyzate by the yeast Saccharomyces cerevisiae ATCC 9763. This strain showed a consumption of 67.6% of reducing sugars available (25 g.L-1), which made it possible to obtain ethanol yield per consumed sugar 0.33 g.g-1.
期刊介绍:
Wood Research publishes original papers aimed at recent advances in all branches of wood science (biology, chemistry, wood physics and mechanics, mechanical and chemical processing etc.). Submission of the manuscript implies that it has not been published before and it is not under consideration for publication elsewhere.