乘数角度的定量均分

IF 0.5 3区 数学 Q3 MATHEMATICS
Yan Mary He, Hongming Nie
{"title":"乘数角度的定量均分","authors":"Yan Mary He, Hongming Nie","doi":"10.4064/fm63-7-2021","DOIUrl":null,"url":null,"abstract":"We study angles of multipliers of repelling cycles for hyperbolic rational maps in $\\mathbb C(z)$. For a fixed $K \\gg 1$, we show that almost all intervals of length $2\\pi/K$ in $(-\\pi,\\pi]$ contain a multiplier angle with the property that the norm of the multiplier is bounded above by a polynomial in $K$.","PeriodicalId":55138,"journal":{"name":"Fundamenta Mathematicae","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative equidistribution of angles of multipliers\",\"authors\":\"Yan Mary He, Hongming Nie\",\"doi\":\"10.4064/fm63-7-2021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study angles of multipliers of repelling cycles for hyperbolic rational maps in $\\\\mathbb C(z)$. For a fixed $K \\\\gg 1$, we show that almost all intervals of length $2\\\\pi/K$ in $(-\\\\pi,\\\\pi]$ contain a multiplier angle with the property that the norm of the multiplier is bounded above by a polynomial in $K$.\",\"PeriodicalId\":55138,\"journal\":{\"name\":\"Fundamenta Mathematicae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm63-7-2021\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm63-7-2021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了$\mathbb C(z)$中双曲有理映射的排斥环乘子的角度。对于固定的$K \gg 1$,我们证明了$(-\pi,\pi]$中几乎所有长度为$2\pi/K$的区间都包含一个乘子角,其性质是乘子角的范数在$K$中有一个多项式的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative equidistribution of angles of multipliers
We study angles of multipliers of repelling cycles for hyperbolic rational maps in $\mathbb C(z)$. For a fixed $K \gg 1$, we show that almost all intervals of length $2\pi/K$ in $(-\pi,\pi]$ contain a multiplier angle with the property that the norm of the multiplier is bounded above by a polynomial in $K$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fundamenta Mathematicae
Fundamenta Mathematicae 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: FUNDAMENTA MATHEMATICAE concentrates on papers devoted to Set Theory, Mathematical Logic and Foundations of Mathematics, Topology and its Interactions with Algebra, Dynamical Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信