M. Malovanyy, V. Zhuk, I. Tymchuk, Ruslan Grechanik, V. Sliusar, N. Vronska, Anastasiya Marakhovska, Andriy Sereda
{"title":"曝气泻湖技术处理垃圾渗滤液的中试模型研究——以Hrybovychi工厂为例","authors":"M. Malovanyy, V. Zhuk, I. Tymchuk, Ruslan Grechanik, V. Sliusar, N. Vronska, Anastasiya Marakhovska, Andriy Sereda","doi":"10.32526/ennrj/21/202200103","DOIUrl":null,"url":null,"abstract":"Results of experimental pilot-scale study of aerobic pre-treatment of the leachate of the Hrybovychi municipal solid waste (MSW) landfill (Ukraine) in batch reactor mode and in semi-continuous mode are presented. The dependencies of key pollution indicators, namely biological oxygen demand, chemical oxygen demand, pH, suspended solids, and total Kjeldahl nitrogen (TKN), during a 30-day periodical aeration process were obtained. The first 15 days treatment was in the batch reactor mode treating an initial volume of raw leachate. The second 15 days treatment was in a semi-continuous reactor mode: 400 L of aerobically pre-treated leachate were pumped to the next treatment stage and consequently the same volume of raw leachate was added in the bioreactor tank. Aerobic biological treatment of Hrybovychi landfill leachate using the developed method achieved significant treatment effects, namely 55.3% of the total Kjeldahl nitrogen, 27% of COD, 70.2% of BOD5 and 66.5% of BODtot. Time dependences of TKN, COD, BOD5, and BODtot are well fitted by simple exponential trends, which correspond to first-order reactions. Landfill leachate, aerobically pre-treated in the pilot-scale treatment unit, can be discharged for final treatment to the bio-plateau or to the wastewater treatment plant.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pilot-Scale Modelling of Aerated Lagoon Technology for the Treatment of Landfill Leachate: Case Study Hrybovychi Plant\",\"authors\":\"M. Malovanyy, V. Zhuk, I. Tymchuk, Ruslan Grechanik, V. Sliusar, N. Vronska, Anastasiya Marakhovska, Andriy Sereda\",\"doi\":\"10.32526/ennrj/21/202200103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results of experimental pilot-scale study of aerobic pre-treatment of the leachate of the Hrybovychi municipal solid waste (MSW) landfill (Ukraine) in batch reactor mode and in semi-continuous mode are presented. The dependencies of key pollution indicators, namely biological oxygen demand, chemical oxygen demand, pH, suspended solids, and total Kjeldahl nitrogen (TKN), during a 30-day periodical aeration process were obtained. The first 15 days treatment was in the batch reactor mode treating an initial volume of raw leachate. The second 15 days treatment was in a semi-continuous reactor mode: 400 L of aerobically pre-treated leachate were pumped to the next treatment stage and consequently the same volume of raw leachate was added in the bioreactor tank. Aerobic biological treatment of Hrybovychi landfill leachate using the developed method achieved significant treatment effects, namely 55.3% of the total Kjeldahl nitrogen, 27% of COD, 70.2% of BOD5 and 66.5% of BODtot. Time dependences of TKN, COD, BOD5, and BODtot are well fitted by simple exponential trends, which correspond to first-order reactions. Landfill leachate, aerobically pre-treated in the pilot-scale treatment unit, can be discharged for final treatment to the bio-plateau or to the wastewater treatment plant.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/21/202200103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/21/202200103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Pilot-Scale Modelling of Aerated Lagoon Technology for the Treatment of Landfill Leachate: Case Study Hrybovychi Plant
Results of experimental pilot-scale study of aerobic pre-treatment of the leachate of the Hrybovychi municipal solid waste (MSW) landfill (Ukraine) in batch reactor mode and in semi-continuous mode are presented. The dependencies of key pollution indicators, namely biological oxygen demand, chemical oxygen demand, pH, suspended solids, and total Kjeldahl nitrogen (TKN), during a 30-day periodical aeration process were obtained. The first 15 days treatment was in the batch reactor mode treating an initial volume of raw leachate. The second 15 days treatment was in a semi-continuous reactor mode: 400 L of aerobically pre-treated leachate were pumped to the next treatment stage and consequently the same volume of raw leachate was added in the bioreactor tank. Aerobic biological treatment of Hrybovychi landfill leachate using the developed method achieved significant treatment effects, namely 55.3% of the total Kjeldahl nitrogen, 27% of COD, 70.2% of BOD5 and 66.5% of BODtot. Time dependences of TKN, COD, BOD5, and BODtot are well fitted by simple exponential trends, which correspond to first-order reactions. Landfill leachate, aerobically pre-treated in the pilot-scale treatment unit, can be discharged for final treatment to the bio-plateau or to the wastewater treatment plant.
期刊介绍:
The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology