{"title":"在硅上获得贵金属和铟的0D和2D结构时界面单晶表面对称性的确定性","authors":"L. Karbivska, V. Karbivskyy, A. O. Romanskyy","doi":"10.15407/ufm.20.03.502","DOIUrl":null,"url":null,"abstract":"The review article deals with ‘quantum engineering’ of growing of silver films on semiconductor substrates that allows obtaining new forms of matter. The results on the energy dispersion of electron states in epitaxial Ag (111) films obtained on Si (001) and Si (111) are presented. The splitting of bands is explained, and analysis of the Shockley’s surface states is given. Superstructures, which are formed on the surface of monolayer silver nanostructures, are analysed in detail. A detailed analysis of the energy states of the noble-metal quantum wells is given. The mechanism of formation of a noble-metal nanorelief on the (111) and (110) surfaces of Si single crystal during multistage thermal deposition is investigated. The symmetry of the interface surface of the single-crystal Si (111) 7 × 7 silicon plane is deterministic in the growth mechanism of the hexagonal-pyramidal structures of copper, silver, and gold. The morphological features of the indium surface during its thermal deposition on the Si (111) and Si (110) surfaces are investigated. The formation of clusters of a regular cubic shape is observed that indicates the formation of In nanocrystals. The formation of In nanoclusters (of ≈10 nm size) on the Si (111) surface and the subsequent modification of the single-crystal surface morphology response in the calculated curves of electron density of states.","PeriodicalId":41786,"journal":{"name":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determinism of the Symmetry of a Single-Crystalline Surface of Interface at Obtaining 0D- and 2D-Structues of Noble Metals and Indium on Silicon\",\"authors\":\"L. Karbivska, V. Karbivskyy, A. O. Romanskyy\",\"doi\":\"10.15407/ufm.20.03.502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The review article deals with ‘quantum engineering’ of growing of silver films on semiconductor substrates that allows obtaining new forms of matter. The results on the energy dispersion of electron states in epitaxial Ag (111) films obtained on Si (001) and Si (111) are presented. The splitting of bands is explained, and analysis of the Shockley’s surface states is given. Superstructures, which are formed on the surface of monolayer silver nanostructures, are analysed in detail. A detailed analysis of the energy states of the noble-metal quantum wells is given. The mechanism of formation of a noble-metal nanorelief on the (111) and (110) surfaces of Si single crystal during multistage thermal deposition is investigated. The symmetry of the interface surface of the single-crystal Si (111) 7 × 7 silicon plane is deterministic in the growth mechanism of the hexagonal-pyramidal structures of copper, silver, and gold. The morphological features of the indium surface during its thermal deposition on the Si (111) and Si (110) surfaces are investigated. The formation of clusters of a regular cubic shape is observed that indicates the formation of In nanocrystals. The formation of In nanoclusters (of ≈10 nm size) on the Si (111) surface and the subsequent modification of the single-crystal surface morphology response in the calculated curves of electron density of states.\",\"PeriodicalId\":41786,\"journal\":{\"name\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ufm.20.03.502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ufm.20.03.502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Determinism of the Symmetry of a Single-Crystalline Surface of Interface at Obtaining 0D- and 2D-Structues of Noble Metals and Indium on Silicon
The review article deals with ‘quantum engineering’ of growing of silver films on semiconductor substrates that allows obtaining new forms of matter. The results on the energy dispersion of electron states in epitaxial Ag (111) films obtained on Si (001) and Si (111) are presented. The splitting of bands is explained, and analysis of the Shockley’s surface states is given. Superstructures, which are formed on the surface of monolayer silver nanostructures, are analysed in detail. A detailed analysis of the energy states of the noble-metal quantum wells is given. The mechanism of formation of a noble-metal nanorelief on the (111) and (110) surfaces of Si single crystal during multistage thermal deposition is investigated. The symmetry of the interface surface of the single-crystal Si (111) 7 × 7 silicon plane is deterministic in the growth mechanism of the hexagonal-pyramidal structures of copper, silver, and gold. The morphological features of the indium surface during its thermal deposition on the Si (111) and Si (110) surfaces are investigated. The formation of clusters of a regular cubic shape is observed that indicates the formation of In nanocrystals. The formation of In nanoclusters (of ≈10 nm size) on the Si (111) surface and the subsequent modification of the single-crystal surface morphology response in the calculated curves of electron density of states.
期刊介绍:
The review journal Uspehi Fiziki Metallov (abbreviated key-title: Usp. Fiz. Met.) was founded in 2000. In 2018, the journal officially obtained parallel title Progress in Physics of Metals (abbreviated title — Prog. Phys. Met.). The journal publishes articles (that has not been published nowhere earlier and are not being considered for publication elsewhere) comprising reviews of experimental and theoretical results in physics and technology of metals, alloys, compounds, and materials that possess metallic properties; reviews on monographs, information about conferences, seminars; data on the history of metal physics; advertising of new technologies, materials and devices. Scope of the Journal: Electronic Structure, Electrical, Magnetic and Optical Properties; Interactions of Radiation and Particles with Solids and Liquids; Structure and Properties of Amorphous Solids and Liquids; Defects and Dynamics of Crystal Structure; Mechanical, Thermal and Kinetic Properties; Phase Equilibria and Transformations; Interphase Boundaries, Metal Surfaces and Films; Structure and Properties of Nanoscale and Mesoscopic Materials; Treatment of Metallic Materials and Its Effects on Microstructure and Properties.