{"title":"根沉积物在形成矿物相关有机物或封装成微团聚体中的命运的概念框架","authors":"Ruzhen Wang, Baitao Gu","doi":"10.1177/11786221231197416","DOIUrl":null,"url":null,"abstract":"Rhizodeposition, as transported from photosynthates and exudated in soils via fine roots, is the pivot linking above- and belowground carbon (C) cycling pathways. Meanwhile, rhizodeposit C serves as “currency” for plant nutrient acquisition because of its critical roles in priming soil microorganisms, maintaining plant-mycorrhizal symbionts, and elongating plant roots. Therefore, a conceptual framework integrating knowledge on the biogeochemical fate of rhizodeposit C can help understand plant nutrient economics and soil C sink function. However, it still remains a great challenge to efficiently delineate the dynamics of rhizodeposit C in soils. In the framework, we present the possible stabilization pathways of rhizodeposit C via formation of mineral-associated organic matter (MAOM) or encapsulation by microaggregates. We further propose that continuous and pulse 13CO2 labeling are powerful techniques to track the fate of rhizodeposit C and to quantify how much C could eventually be sequestrated in soils as the component of MAOM or microaggregates. This framework would provide future research possibilities to better optimize plant C allocation and productivity and preserve soil C stocks.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Conceptual Framework on the Fate of Rhizodeposits in Forming Mineral-Associated Organic Matter or Encapsulating Into Microaggreagtes\",\"authors\":\"Ruzhen Wang, Baitao Gu\",\"doi\":\"10.1177/11786221231197416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rhizodeposition, as transported from photosynthates and exudated in soils via fine roots, is the pivot linking above- and belowground carbon (C) cycling pathways. Meanwhile, rhizodeposit C serves as “currency” for plant nutrient acquisition because of its critical roles in priming soil microorganisms, maintaining plant-mycorrhizal symbionts, and elongating plant roots. Therefore, a conceptual framework integrating knowledge on the biogeochemical fate of rhizodeposit C can help understand plant nutrient economics and soil C sink function. However, it still remains a great challenge to efficiently delineate the dynamics of rhizodeposit C in soils. In the framework, we present the possible stabilization pathways of rhizodeposit C via formation of mineral-associated organic matter (MAOM) or encapsulation by microaggregates. We further propose that continuous and pulse 13CO2 labeling are powerful techniques to track the fate of rhizodeposit C and to quantify how much C could eventually be sequestrated in soils as the component of MAOM or microaggregates. This framework would provide future research possibilities to better optimize plant C allocation and productivity and preserve soil C stocks.\",\"PeriodicalId\":44801,\"journal\":{\"name\":\"Air Soil and Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Soil and Water Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11786221231197416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221231197416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A Conceptual Framework on the Fate of Rhizodeposits in Forming Mineral-Associated Organic Matter or Encapsulating Into Microaggreagtes
Rhizodeposition, as transported from photosynthates and exudated in soils via fine roots, is the pivot linking above- and belowground carbon (C) cycling pathways. Meanwhile, rhizodeposit C serves as “currency” for plant nutrient acquisition because of its critical roles in priming soil microorganisms, maintaining plant-mycorrhizal symbionts, and elongating plant roots. Therefore, a conceptual framework integrating knowledge on the biogeochemical fate of rhizodeposit C can help understand plant nutrient economics and soil C sink function. However, it still remains a great challenge to efficiently delineate the dynamics of rhizodeposit C in soils. In the framework, we present the possible stabilization pathways of rhizodeposit C via formation of mineral-associated organic matter (MAOM) or encapsulation by microaggregates. We further propose that continuous and pulse 13CO2 labeling are powerful techniques to track the fate of rhizodeposit C and to quantify how much C could eventually be sequestrated in soils as the component of MAOM or microaggregates. This framework would provide future research possibilities to better optimize plant C allocation and productivity and preserve soil C stocks.
期刊介绍:
Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.