单位球的解析摄动得到椭球的拉普拉斯特征值

Pub Date : 2023-04-25 DOI:10.1007/s10455-023-09901-4
Anandateertha G. Mangasuli, Aditya Tiwari
{"title":"单位球的解析摄动得到椭球的拉普拉斯特征值","authors":"Anandateertha G. Mangasuli,&nbsp;Aditya Tiwari","doi":"10.1007/s10455-023-09901-4","DOIUrl":null,"url":null,"abstract":"<div><p>The Euclidean unit sphere in dimension <i>n</i> minimizes the first positive eigenvalue of the Laplacian among all the compact, Riemannian manifolds of dimension <i>n</i> with Ricci curvature bounded below by <span>\\(n-1\\)</span> as a consequence of Lichnerowicz’s theorem. The eigenspectrum of the Laplacian is given by a non-decreasing sequence of real numbers tending to infinity. In dimension two, we prove that such an inequality holds for the subsequent eigenvalues in the sequence for ellipsoids that are obtained as analytic perturbations of the Euclidean unit sphere for the truncated spectrum.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laplace eigenvalues of ellipsoids obtained as analytic perturbations of the unit sphere\",\"authors\":\"Anandateertha G. Mangasuli,&nbsp;Aditya Tiwari\",\"doi\":\"10.1007/s10455-023-09901-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Euclidean unit sphere in dimension <i>n</i> minimizes the first positive eigenvalue of the Laplacian among all the compact, Riemannian manifolds of dimension <i>n</i> with Ricci curvature bounded below by <span>\\\\(n-1\\\\)</span> as a consequence of Lichnerowicz’s theorem. The eigenspectrum of the Laplacian is given by a non-decreasing sequence of real numbers tending to infinity. In dimension two, we prove that such an inequality holds for the subsequent eigenvalues in the sequence for ellipsoids that are obtained as analytic perturbations of the Euclidean unit sphere for the truncated spectrum.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09901-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09901-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为Lichnerowicz定理的结果,在所有具有Ricci曲率的n维紧致黎曼流形中,n维的欧几里得单位球面使拉普拉斯算子的第一个正特征值最小化,该黎曼流形下的Ricci曲率由\(n-1\)定界。拉普拉斯算子的本征谱是由趋向无穷大的不递减实数序列给出的。在维度2中,我们证明了这样的不等式适用于椭球序列中的后续特征值,这些特征值是作为截断谱的欧几里得单位球的解析扰动获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Laplace eigenvalues of ellipsoids obtained as analytic perturbations of the unit sphere

The Euclidean unit sphere in dimension n minimizes the first positive eigenvalue of the Laplacian among all the compact, Riemannian manifolds of dimension n with Ricci curvature bounded below by \(n-1\) as a consequence of Lichnerowicz’s theorem. The eigenspectrum of the Laplacian is given by a non-decreasing sequence of real numbers tending to infinity. In dimension two, we prove that such an inequality holds for the subsequent eigenvalues in the sequence for ellipsoids that are obtained as analytic perturbations of the Euclidean unit sphere for the truncated spectrum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信