AI4IO:一套用于IO感知调度的基于AI的工具

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Michael R. Wyatt, Stephen Herbein, T. Gamblin, M. Taufer
{"title":"AI4IO:一套用于IO感知调度的基于AI的工具","authors":"Michael R. Wyatt, Stephen Herbein, T. Gamblin, M. Taufer","doi":"10.1177/10943420221079765","DOIUrl":null,"url":null,"abstract":"Traditional workload managers do not have the capacity to consider how IO contention can increase job runtime and even cause entire resource allocations to be wasted. Whether from bursts of IO demand or parallel file systems (PFS) performance degradation, IO contention must be identified and addressed to ensure maximum performance. In this paper, we present AI4IO (AI for IO), a suite of tools using AI methods to prevent and mitigate performance losses due to IO contention. AI4IO enables existing workload managers to become IO-aware. Currently, AI4IO consists of two tools: PRIONN and CanarIO. PRIONN predicts IO contention and empowers schedulers to prevent it. CanarIO mitigates the impact of IO contention when it does occur. We measure the effectiveness of AI4IO when integrated into Flux, a next-generation scheduler, for both small- and large-scale IO-intensive job workloads. Our results show that integrating AI4IO into Flux improves the workload makespan up to 6.4%, which can account for more than 18,000 node-h of saved resources per week on a production cluster in our large-scale workload.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"36 1","pages":"370 - 387"},"PeriodicalIF":3.5000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AI4IO: A suite of AI-based tools for IO-aware scheduling\",\"authors\":\"Michael R. Wyatt, Stephen Herbein, T. Gamblin, M. Taufer\",\"doi\":\"10.1177/10943420221079765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional workload managers do not have the capacity to consider how IO contention can increase job runtime and even cause entire resource allocations to be wasted. Whether from bursts of IO demand or parallel file systems (PFS) performance degradation, IO contention must be identified and addressed to ensure maximum performance. In this paper, we present AI4IO (AI for IO), a suite of tools using AI methods to prevent and mitigate performance losses due to IO contention. AI4IO enables existing workload managers to become IO-aware. Currently, AI4IO consists of two tools: PRIONN and CanarIO. PRIONN predicts IO contention and empowers schedulers to prevent it. CanarIO mitigates the impact of IO contention when it does occur. We measure the effectiveness of AI4IO when integrated into Flux, a next-generation scheduler, for both small- and large-scale IO-intensive job workloads. Our results show that integrating AI4IO into Flux improves the workload makespan up to 6.4%, which can account for more than 18,000 node-h of saved resources per week on a production cluster in our large-scale workload.\",\"PeriodicalId\":54957,\"journal\":{\"name\":\"International Journal of High Performance Computing Applications\",\"volume\":\"36 1\",\"pages\":\"370 - 387\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Performance Computing Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10943420221079765\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420221079765","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2

摘要

传统的工作负载管理器没有能力考虑IO争用如何增加作业运行时,甚至导致浪费整个资源分配。无论是IO需求爆发还是并行文件系统(PFS)性能下降,都必须识别和解决IO争用,以确保最大性能。在本文中,我们提出了AI4IO (AI for IO),这是一套使用AI方法来防止和减轻由于IO争用而导致的性能损失的工具。AI4IO使现有的工作负载管理器能够感知io。目前,AI4IO包括两个工具:PRIONN和CanarIO。PRIONN预测IO争用,并授权调度器防止它。CanarIO在IO争用发生时减轻了它的影响。我们测量了AI4IO集成到Flux(下一代调度器)中时的有效性,用于小型和大型io密集型工作负载。我们的结果表明,将AI4IO集成到Flux中可以将工作负载的makespan提高6.4%,在我们的大规模工作负载中,这可以在生产集群上每周节省超过18,000 node-h的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI4IO: A suite of AI-based tools for IO-aware scheduling
Traditional workload managers do not have the capacity to consider how IO contention can increase job runtime and even cause entire resource allocations to be wasted. Whether from bursts of IO demand or parallel file systems (PFS) performance degradation, IO contention must be identified and addressed to ensure maximum performance. In this paper, we present AI4IO (AI for IO), a suite of tools using AI methods to prevent and mitigate performance losses due to IO contention. AI4IO enables existing workload managers to become IO-aware. Currently, AI4IO consists of two tools: PRIONN and CanarIO. PRIONN predicts IO contention and empowers schedulers to prevent it. CanarIO mitigates the impact of IO contention when it does occur. We measure the effectiveness of AI4IO when integrated into Flux, a next-generation scheduler, for both small- and large-scale IO-intensive job workloads. Our results show that integrating AI4IO into Flux improves the workload makespan up to 6.4%, which can account for more than 18,000 node-h of saved resources per week on a production cluster in our large-scale workload.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of High Performance Computing Applications
International Journal of High Performance Computing Applications 工程技术-计算机:跨学科应用
CiteScore
6.10
自引率
6.50%
发文量
32
审稿时长
>12 weeks
期刊介绍: With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信