具有R^2位的广义Kadomtsev-Petviashvili方程解的多重性

Pub Date : 2023-07-17 DOI:10.58997/ejde.2023.48
Zheng Xie, Jing Chen
{"title":"具有R^2位的广义Kadomtsev-Petviashvili方程解的多重性","authors":"Zheng Xie, Jing Chen","doi":"10.58997/ejde.2023.48","DOIUrl":null,"url":null,"abstract":"In this article, we study the generalized Kadomtsev-Petviashvili equation witha potential $$ (-u_{xx}+D_{x}^{-2}u_{yy}+V(\\varepsilon x,\\varepsilon y)u-f(u))_{x}=0\\quad \\text{in }\\mathbb{R}^2, $$ where \\(D_{x}^{-2}h(x,y)=\\int_{-\\infty }^{x}\\int_{-\\infty }^{t}h(s,y)\\,ds\\,dt \\), \\(f\\) is a nonlinearity, \\(\\varepsilon\\) is a small positive parameter, and the potential \\(V\\) satisfies a local condition. We prove the existence of nontrivial solitary waves for the modified problem by applying penalization techniques. The relationship between the number of positive solutions and the topology of the set where \\(V\\) attains its minimum is obtained by using Ljusternik-Schnirelmann theory. With the help of Moser's iteration method, we verify that the solutions of the modified problem are indeed solutions of the original  roblem for \\(\\varepsilon>0\\) small enough.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicity of solutions for a generalized Kadomtsev-Petviashvili equation with potential in R^2\",\"authors\":\"Zheng Xie, Jing Chen\",\"doi\":\"10.58997/ejde.2023.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the generalized Kadomtsev-Petviashvili equation witha potential $$ (-u_{xx}+D_{x}^{-2}u_{yy}+V(\\\\varepsilon x,\\\\varepsilon y)u-f(u))_{x}=0\\\\quad \\\\text{in }\\\\mathbb{R}^2, $$ where \\\\(D_{x}^{-2}h(x,y)=\\\\int_{-\\\\infty }^{x}\\\\int_{-\\\\infty }^{t}h(s,y)\\\\,ds\\\\,dt \\\\), \\\\(f\\\\) is a nonlinearity, \\\\(\\\\varepsilon\\\\) is a small positive parameter, and the potential \\\\(V\\\\) satisfies a local condition. We prove the existence of nontrivial solitary waves for the modified problem by applying penalization techniques. The relationship between the number of positive solutions and the topology of the set where \\\\(V\\\\) attains its minimum is obtained by using Ljusternik-Schnirelmann theory. With the help of Moser's iteration method, we verify that the solutions of the modified problem are indeed solutions of the original  roblem for \\\\(\\\\varepsilon>0\\\\) small enough.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有势$$ (-u_{xx}+D_{x}^{-2}u_{yy}+V(\varepsilon x,\varepsilon y)u-f(u))_{x}=0\quad \text{in }\mathbb{R}^2, $$的广义Kadomtsev-Petviashvili方程,其中\(D_{x}^{-2}h(x,y)=\int_{-\infty }^{x}\int_{-\infty }^{t}h(s,y)\,ds\,dt \), \(f\)为非线性,\(\varepsilon\)为小正参数,势\(V\)满足局部条件。利用惩罚技术证明了修正问题的非平凡孤立波的存在性。利用Ljusternik-Schnirelmann理论,得到了\(V\)达到最小值的集合的拓扑与正解的个数之间的关系。借助于Moser迭代法,我们验证了在\(\varepsilon>0\)足够小的情况下,修正问题的解确实是原问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Multiplicity of solutions for a generalized Kadomtsev-Petviashvili equation with potential in R^2
In this article, we study the generalized Kadomtsev-Petviashvili equation witha potential $$ (-u_{xx}+D_{x}^{-2}u_{yy}+V(\varepsilon x,\varepsilon y)u-f(u))_{x}=0\quad \text{in }\mathbb{R}^2, $$ where \(D_{x}^{-2}h(x,y)=\int_{-\infty }^{x}\int_{-\infty }^{t}h(s,y)\,ds\,dt \), \(f\) is a nonlinearity, \(\varepsilon\) is a small positive parameter, and the potential \(V\) satisfies a local condition. We prove the existence of nontrivial solitary waves for the modified problem by applying penalization techniques. The relationship between the number of positive solutions and the topology of the set where \(V\) attains its minimum is obtained by using Ljusternik-Schnirelmann theory. With the help of Moser's iteration method, we verify that the solutions of the modified problem are indeed solutions of the original  roblem for \(\varepsilon>0\) small enough.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信